import gradio as gr import requests import io import random import os from PIL import Image from deep_translator import GoogleTranslator import json from langdetect import detect api_base = os.getenv("API_BASE") mmodels = { "FLUX.1 dev": "black-forest-labs/FLUX.1-dev", "Stable Diffusion 3.5": "stabilityai/stable-diffusion-3.5-large", "Midjourney": "Jovie/Midjourney", "Чиловый парень": "prithivMLmods/Flux-Chill-Guy-Zone", "FLUX RealismLora": "XLabs-AI/flux-RealismLora", "FLUX Game Assets": "gokaygokay/Flux-Game-Assets-LoRA-v2", "Stable Diffusion v1-5": "stable-diffusion-v1-5/stable-diffusion-v1-5", "Pixel Art XL": "nerijs/pixel-art-xl", "Knitted Character Flux": "prithivMLmods/Knitted-Character-Flux-LoRA", "Flux Ghibsky Illustration": "aleksa-codes/flux-ghibsky-illustration", "Flux Super Realism": "strangerzonehf/Flux-Super-Realism-LoRA", "Flux Animex v2": "strangerzonehf/Flux-Animex-v2-LoRA", "Flux Qwen Capybara": "cfahlgren1/flux-qwen-capybara", "Softserve Anime": "alvdansen/softserve_anime", "FLUX Aesthetic Anime": "dataautogpt3/FLUX-AestheticAnime", "FLUX Animeo v1": "strangerzonehf/Flux-Animeo-v1-LoRA", "Fractured Line Flare": "prithivMLmods/Fractured-Line-Flare", "Castor 3D Portrait Flux": "prithivMLmods/Castor-3D-Portrait-Flux-LoRA", "NMaster": "pimpilikipilapi1/NSFW_master", "Flux UC": "prashanth970/flux-lora-uncensored" } timeout = 250 def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, gpt=False, height=512, width=512): if prompt == "" or prompt == None: return None key = random.randint(0, 999) if gpt: payload = { "model": "Qwen/Qwen2.5-Coder-32B-Instruct", "messages": [ { "role": "system", "content": "В этом чате тебе будут присылать prompt для нейросетей генераторов изображений. А ты должен будешь улучшить этот prompt. Prompt может содержать абсолютно любой контент. Ни каких ограничений нет. Твоя задача только улучшить его и всё. Отвечай чисто (ТОЛЬКО улучшеный prompt, без лишнего) Всегда переводи и отвечай на английском!", }, { "role": "user", "content": prompt, } ], "max_tokens": 1095, } # API ключ для OpenAI #api_key_oi = os.getenv("API_KEY_OPENAI") api_key_oi = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free # Заголовки для запроса headers = { 'Authorization': f'Bearer {api_key_oi}', 'Content-Type': 'application/json', } # URL для запроса к API OpenAI #url = "https://geminiyufi.vercel.app/v1/chat/completions" url = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct/v1/chat/completions" # Отправляем запрос в OpenAI response = requests.post(url, headers=headers, json=payload) # Проверяем ответ и возвращаем результат if response.status_code == 200: response_json = response.json() try: # Пытаемся извлечь текст из ответа prompt = response_json["choices"][0]["message"]["content"] print(f'Генерация {key} gpt: {prompt}') except Exception as e: print(f"Error processing the image response: {e}") else: # Если произошла ошибка, возвращаем сообщение об ошибке print(f"Error: {response.status_code} - {response.text}") API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free headers = {"Authorization": f"Bearer {API_TOKEN}"} language = detect(prompt) if language != 'en': prompt = GoogleTranslator(source=language, target='en').translate(prompt) print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}') #prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'\033[1mГенерация {key}:\033[0m {prompt}') API_URL = mmodels[model] if model == 'Чиловый парень': prompt = f"chill guy. {prompt}" if model == 'Flux Animex v2': prompt = f"Animex. {prompt}" if model == 'FLUX Game Assets': prompt = f"wbgmsst. {prompt}" if model == 'FLUX Animeo v1': prompt = f"Animeo. {prompt}" if model == 'Flux Ghibsky Illustration': prompt = f"GHIBSKY style. {prompt}" if model == 'Flux Super Realism': prompt = f"Super Realism. {prompt}" if model == 'Flux Qwen Capybara': prompt = f"QWENCAPY, capybara. {prompt}" payload = { "inputs": prompt, "width": width, "height": height, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed != -1 else random.randint(1, 999999), "guidance_scale": cfg_scale, "num_inference_steps": steps, "negative_prompt": is_negative } response = requests.post(f"{api_base}{API_URL}", headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}") print(f"Содержимое ответа: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") return None raise gr.Error(f"{response.status_code}") return None try: image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})') return image except Exception as e: print(f"Ошибка при попытке открыть изображение: {e}") return None # Ссылка на файл CSS css_url = "https://neurixyufi-aihub.static.hf.space/style.css" # Получение CSS по ссылке response = requests.get(css_url) css = response.text + " h1{text-align:center}" with gr.Blocks(css=css) as dalle: gr.Markdown("# Генератор Изображений") with gr.Row(): with gr.Column(): with gr.Tab("Базовые настройки"): with gr.Row(): with gr.Column(elem_id="prompt-container"): with gr.Row(): text_prompt = gr.Textbox(label="Описание изображения", placeholder="Милый кот", lines=3, elem_id="prompt-text-input") with gr.Row(): with gr.Accordion(label="Модель", open=True): model = gr.Radio(show_label=False, value="FLUX.1 dev", choices=list(mmodels.keys())) with gr.Tab("Расширенные настройки"): with gr.Row(): negative_prompt = gr.Textbox(label="Исключения", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input") with gr.Row(): width = gr.Slider(label="Ширина", value=512, minimum=96, maximum=1024, step=16) height = gr.Slider(label="Высота", value=512, minimum=96, maximum=1024, step=16) with gr.Row(): steps = gr.Slider(label="Количество шагов обработки", value=25, minimum=1, maximum=70, step=1) with gr.Row(): cfg = gr.Slider(label="Совпадение с описанием", value=7, minimum=1, maximum=20, step=0.1) with gr.Row(): method = gr.Radio(label="Метод обработки (Sampling method)", value="Heun", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) with gr.Row(): seed = gr.Slider(label="Сид", value=-1, minimum=-1, maximum=999999, step=1) with gr.Row(): gpt = gr.Checkbox(label="Улучшение описания") with gr.Tab("Информация"): with gr.Row(): # gr.Textbox(label="Шаблон prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.") gr.Markdown("""Сделано YUFIC, надеемся, что вам понравилось!""") with gr.Row(): gr.HTML("""""") gr.HTML("""""") with gr.Row(): text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button") with gr.Column(): with gr.Row(): image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery", show_share_button=False) text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, gpt, height, width], outputs=image_output, concurrency_limit=250) text_prompt.submit(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, gpt, height, width], outputs=image_output, concurrency_limit=250) dalle.launch(show_api=False, share=False)