Spaces:
Runtime error
Runtime error
basic loop back and multi tag mechanism
Browse files- .gitignore +41 -0
- app.py +342 -38
- flagged/log.csv +3 -0
.gitignore
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore virtual environment directories
|
2 |
+
.venv/
|
3 |
+
venv_nmr/
|
4 |
+
|
5 |
+
# Ignore Python cache files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# Ignore model files
|
11 |
+
models/
|
12 |
+
*.pth
|
13 |
+
|
14 |
+
# Ignore joblib files
|
15 |
+
data/*.joblib
|
16 |
+
|
17 |
+
# Ignore Jupyter notebook checkpoints
|
18 |
+
.ipynb_checkpoints/
|
19 |
+
|
20 |
+
# Ignore the feedback data file
|
21 |
+
feedback_data.csv
|
22 |
+
|
23 |
+
# Ignore log files
|
24 |
+
*.log
|
25 |
+
|
26 |
+
# Ignore any environment variable files
|
27 |
+
.env
|
28 |
+
|
29 |
+
# Ignore temporary files and directories
|
30 |
+
*.tmp
|
31 |
+
*.temp
|
32 |
+
tmp/
|
33 |
+
temp/
|
34 |
+
|
35 |
+
# Ignore OS-specific files
|
36 |
+
.DS_Store
|
37 |
+
Thumbs.db
|
38 |
+
|
39 |
+
# Ignore IDE-specific files
|
40 |
+
.vscode/
|
41 |
+
.idea/
|
app.py
CHANGED
@@ -1,9 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
from joblib import load
|
|
|
|
|
5 |
|
6 |
-
# Define the
|
7 |
class ImprovedSongRecommender(nn.Module):
|
8 |
def __init__(self, input_size, num_titles):
|
9 |
super(ImprovedSongRecommender, self).__init__()
|
@@ -29,36 +313,28 @@ class ImprovedSongRecommender(nn.Module):
|
|
29 |
# Load the trained model
|
30 |
model_path = "models/improved_model.pth"
|
31 |
num_unique_titles = 4855
|
32 |
-
|
33 |
-
model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
|
34 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
35 |
model.eval()
|
36 |
|
37 |
# Load the label encoders and scaler
|
38 |
label_encoders_path = "data/new_label_encoders.joblib"
|
39 |
-
scaler_path = "data/new_scaler.joblib"
|
40 |
-
|
41 |
label_encoders = load(label_encoders_path)
|
42 |
-
scaler = load(scaler_path)
|
43 |
-
|
44 |
-
# Create a mapping from encoded indices to actual song titles
|
45 |
-
index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
|
46 |
|
47 |
def encode_input(tags, artist_name):
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
try:
|
52 |
-
encoded_tags = label_encoders['tags'].transform([tags])[0]
|
53 |
-
except ValueError:
|
54 |
-
encoded_tags = label_encoders['tags'].transform(['unknown'])[0]
|
55 |
-
|
56 |
-
if artist_name:
|
57 |
try:
|
58 |
-
|
59 |
except ValueError:
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
|
63 |
|
64 |
return [encoded_tags, encoded_artist]
|
@@ -66,23 +342,51 @@ def encode_input(tags, artist_name):
|
|
66 |
def recommend_songs(tags, artist_name):
|
67 |
encoded_input = encode_input(tags, artist_name)
|
68 |
input_tensor = torch.tensor([encoded_input]).float()
|
69 |
-
|
70 |
with torch.no_grad():
|
71 |
output = model(input_tensor)
|
72 |
-
|
73 |
recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
|
74 |
-
recommendations = [
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import torch
|
3 |
+
# import torch.nn as nn
|
4 |
+
# from joblib import load
|
5 |
+
|
6 |
+
# # Define the same neural network model
|
7 |
+
# class ImprovedSongRecommender(nn.Module):
|
8 |
+
# def __init__(self, input_size, num_titles):
|
9 |
+
# super(ImprovedSongRecommender, self).__init__()
|
10 |
+
# self.fc1 = nn.Linear(input_size, 128)
|
11 |
+
# self.bn1 = nn.BatchNorm1d(128)
|
12 |
+
# self.fc2 = nn.Linear(128, 256)
|
13 |
+
# self.bn2 = nn.BatchNorm1d(256)
|
14 |
+
# self.fc3 = nn.Linear(256, 128)
|
15 |
+
# self.bn3 = nn.BatchNorm1d(128)
|
16 |
+
# self.output = nn.Linear(128, num_titles)
|
17 |
+
# self.dropout = nn.Dropout(0.5)
|
18 |
+
|
19 |
+
# def forward(self, x):
|
20 |
+
# x = torch.relu(self.bn1(self.fc1(x)))
|
21 |
+
# x = self.dropout(x)
|
22 |
+
# x = torch.relu(self.bn2(self.fc2(x)))
|
23 |
+
# x = self.dropout(x)
|
24 |
+
# x = torch.relu(self.bn3(self.fc3(x)))
|
25 |
+
# x = self.dropout(x)
|
26 |
+
# x = self.output(x)
|
27 |
+
# return x
|
28 |
+
|
29 |
+
# # Load the trained model
|
30 |
+
# model_path = "models/improved_model.pth"
|
31 |
+
# num_unique_titles = 4855
|
32 |
+
|
33 |
+
# model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
|
34 |
+
# model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
35 |
+
# model.eval()
|
36 |
+
|
37 |
+
# # Load the label encoders and scaler
|
38 |
+
# label_encoders_path = "data/new_label_encoders.joblib"
|
39 |
+
# scaler_path = "data/new_scaler.joblib"
|
40 |
+
|
41 |
+
# label_encoders = load(label_encoders_path)
|
42 |
+
# scaler = load(scaler_path)
|
43 |
+
|
44 |
+
# # Create a mapping from encoded indices to actual song titles
|
45 |
+
# index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
|
46 |
+
|
47 |
+
# def encode_input(tags, artist_name):
|
48 |
+
# tags = tags.strip().replace('\n', '')
|
49 |
+
# artist_name = artist_name.strip().replace('\n', '')
|
50 |
+
|
51 |
+
# try:
|
52 |
+
# encoded_tags = label_encoders['tags'].transform([tags])[0]
|
53 |
+
# except ValueError:
|
54 |
+
# encoded_tags = label_encoders['tags'].transform(['unknown'])[0]
|
55 |
+
|
56 |
+
# if artist_name:
|
57 |
+
# try:
|
58 |
+
# encoded_artist = label_encoders['artist_name'].transform([artist_name])[0]
|
59 |
+
# except ValueError:
|
60 |
+
# encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
|
61 |
+
# else:
|
62 |
+
# encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
|
63 |
+
|
64 |
+
# return [encoded_tags, encoded_artist]
|
65 |
+
|
66 |
+
# def recommend_songs(tags, artist_name):
|
67 |
+
# encoded_input = encode_input(tags, artist_name)
|
68 |
+
# input_tensor = torch.tensor([encoded_input]).float()
|
69 |
+
|
70 |
+
# with torch.no_grad():
|
71 |
+
# output = model(input_tensor)
|
72 |
+
|
73 |
+
# recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
|
74 |
+
# recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
|
75 |
+
|
76 |
+
# formatted_output = [f"Recommendation {i+1}: {rec}" for i, rec in enumerate(recommendations)]
|
77 |
+
# return formatted_output
|
78 |
+
|
79 |
+
# # Set up the Gradio interface
|
80 |
+
# interface = gr.Interface(
|
81 |
+
# fn=recommend_songs,
|
82 |
+
# inputs=[gr.Textbox(lines=1, placeholder="Enter Tags (e.g., rock)"), gr.Textbox(lines=1, placeholder="Enter Artist Name (optional)")],
|
83 |
+
# outputs=gr.Textbox(label="Recommendations"),
|
84 |
+
# title="Music Recommendation System",
|
85 |
+
# description="Enter tags and (optionally) artist name to get music recommendations."
|
86 |
+
# )
|
87 |
+
|
88 |
+
# interface.launch()
|
89 |
+
|
90 |
+
# import gradio as gr
|
91 |
+
# import torch
|
92 |
+
# import torch.nn as nn
|
93 |
+
# from joblib import load
|
94 |
+
# import numpy as np
|
95 |
+
# import json
|
96 |
+
|
97 |
+
# class ImprovedSongRecommender(nn.Module):
|
98 |
+
# def __init__(self, input_size, num_titles):
|
99 |
+
# super(ImprovedSongRecommender, self).__init__()
|
100 |
+
# self.fc1 = nn.Linear(input_size, 128)
|
101 |
+
# self.bn1 = nn.BatchNorm1d(128)
|
102 |
+
# self.fc2 = nn.Linear(128, 256)
|
103 |
+
# self.bn2 = nn.BatchNorm1d(256)
|
104 |
+
# self.fc3 = nn.Linear(256, 128)
|
105 |
+
# self.bn3 = nn.BatchNorm1d(128)
|
106 |
+
# self.output = nn.Linear(128, num_titles)
|
107 |
+
# self.dropout = nn.Dropout(0.5)
|
108 |
+
|
109 |
+
# def forward(self, x):
|
110 |
+
# x = torch.relu(self.bn1(self.fc1(x)))
|
111 |
+
# x = self.dropout(x)
|
112 |
+
# x = torch.relu(self.bn2(self.fc2(x)))
|
113 |
+
# x = self.dropout(x)
|
114 |
+
# x = torch.relu(self.bn3(self.fc3(x)))
|
115 |
+
# x = self.dropout(x)
|
116 |
+
# x = self.output(x)
|
117 |
+
# return x
|
118 |
+
|
119 |
+
# # Load the trained model
|
120 |
+
# model_path = "models/improved_model.pth"
|
121 |
+
# num_unique_titles = 4855
|
122 |
+
# model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
|
123 |
+
# model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
124 |
+
# model.eval()
|
125 |
+
|
126 |
+
# # Load the label encoders and scaler
|
127 |
+
# label_encoders_path = "data/new_label_encoders.joblib"
|
128 |
+
# scaler_path = "data/new_scaler.joblib"
|
129 |
+
# label_encoders = load(label_encoders_path)
|
130 |
+
# scaler = load(scaler_path)
|
131 |
+
|
132 |
+
# index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
|
133 |
+
|
134 |
+
# def encode_input(tags, artist_name):
|
135 |
+
# tags_list = [tag.strip() for tag in tags.split(',')]
|
136 |
+
# encoded_tags_list = []
|
137 |
+
# for tag in tags_list:
|
138 |
+
# try:
|
139 |
+
# encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
|
140 |
+
# except ValueError:
|
141 |
+
# encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
|
142 |
+
|
143 |
+
# encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
|
144 |
+
|
145 |
+
# try:
|
146 |
+
# encoded_artist = label_encoders['artist_name'].transform([artist_name])[0] if artist_name else label_encoders['artist_name'].transform(['unknown'])[0]
|
147 |
+
# except ValueError:
|
148 |
+
# encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
|
149 |
+
|
150 |
+
# return [encoded_tags, encoded_artist]
|
151 |
+
|
152 |
+
# def recommend_songs(tags, artist_name):
|
153 |
+
# encoded_input = encode_input(tags, artist_name)
|
154 |
+
# input_tensor = torch.tensor([encoded_input]).float()
|
155 |
+
# with torch.no_grad():
|
156 |
+
# output = model(input_tensor)
|
157 |
+
# recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
|
158 |
+
# recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
|
159 |
+
|
160 |
+
# feedback_html = []
|
161 |
+
# for idx, rec in enumerate(recommendations):
|
162 |
+
# feedback_html.append(f"{rec} <button onclick='gr.Interface.update(\"record_feedback\", {{\"recommendation\": \"{rec}\", \"feedback\": \"up\"}})'>π</button> <button onclick='gr.Interface.update(\"record_feedback\", {{\"recommendation\": \"{rec}\", \"feedback\": \"down\"}})'>π</button>")
|
163 |
+
# return "<br>".join(feedback_html)
|
164 |
+
|
165 |
+
# def record_feedback(recommendation, feedback):
|
166 |
+
|
167 |
+
# with open("feedback_data.csv", "a") as file:
|
168 |
+
# file.write(f"{recommendation},{feedback}\n")
|
169 |
+
# return f"Feedback recorded for {recommendation}: {feedback}"
|
170 |
+
|
171 |
+
# interface = gr.Interface(
|
172 |
+
# fn=recommend_songs,
|
173 |
+
# inputs=[
|
174 |
+
# gr.Textbox(lines=2, placeholder="Enter Tags (e.g., rock, jazz)"),
|
175 |
+
# gr.Textbox(lines=2, placeholder="Enter Artist Name (optional)")
|
176 |
+
# ],
|
177 |
+
# outputs=gr.HTML(label="Recommendations"),
|
178 |
+
# title="Music Recommendation System",
|
179 |
+
# description="Enter tags and (optionally) artist name to get music recommendations. Click on thumbs up/down to provide feedback on each song.",
|
180 |
+
# allow_flagging="never"
|
181 |
+
# )
|
182 |
+
|
183 |
+
# interface.launch()
|
184 |
+
|
185 |
+
|
186 |
+
# import gradio as gr
|
187 |
+
# import torch
|
188 |
+
# import torch.nn as nn
|
189 |
+
# from joblib import load
|
190 |
+
# import numpy as np
|
191 |
+
# import os
|
192 |
+
|
193 |
+
# class ImprovedSongRecommender(nn.Module):
|
194 |
+
# def __init__(self, input_size, num_titles):
|
195 |
+
# super(ImprovedSongRecommender, self).__init__()
|
196 |
+
# self.fc1 = nn.Linear(input_size, 128)
|
197 |
+
# self.bn1 = nn.BatchNorm1d(128)
|
198 |
+
# self.fc2 = nn.Linear(128, 256)
|
199 |
+
# self.bn2 = nn.BatchNorm1d(256)
|
200 |
+
# self.fc3 = nn.Linear(256, 128)
|
201 |
+
# self.bn3 = nn.BatchNorm1d(128)
|
202 |
+
# self.output = nn.Linear(128, num_titles)
|
203 |
+
# self.dropout = nn.Dropout(0.5)
|
204 |
+
|
205 |
+
# def forward(self, x):
|
206 |
+
# x = torch.relu(self.bn1(self.fc1(x)))
|
207 |
+
# x = self.dropout(x)
|
208 |
+
# x = torch.relu(self.bn2(self.fc2(x)))
|
209 |
+
# x = self.dropout(x)
|
210 |
+
# x = torch.relu(self.bn3(self.fc3(x)))
|
211 |
+
# x = self.dropout(x)
|
212 |
+
# x = self.output(x)
|
213 |
+
# return x
|
214 |
+
|
215 |
+
# # Load the trained model
|
216 |
+
# model_path = "models/improved_model.pth"
|
217 |
+
# num_unique_titles = 4855
|
218 |
+
# model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
|
219 |
+
# model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
220 |
+
# model.eval()
|
221 |
+
|
222 |
+
# # Load the label encoders and scaler
|
223 |
+
# label_encoders_path = "data/new_label_encoders.joblib"
|
224 |
+
# scaler_path = "data/new_scaler.joblib"
|
225 |
+
# label_encoders = load(label_encoders_path)
|
226 |
+
# scaler = load(scaler_path)
|
227 |
+
|
228 |
+
# index_to_song_title = {index: title for index, title in enumerate(label_encoders['title'].classes_)}
|
229 |
+
|
230 |
+
# def encode_input(tags, artist_name):
|
231 |
+
# tags_list = [tag.strip() for tag in tags.split(',')]
|
232 |
+
# encoded_tags_list = []
|
233 |
+
# for tag in tags_list:
|
234 |
+
# try:
|
235 |
+
# encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
|
236 |
+
# except ValueError:
|
237 |
+
# encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
|
238 |
+
|
239 |
+
# encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
|
240 |
+
|
241 |
+
# try:
|
242 |
+
# encoded_artist = label_encoders['artist_name'].transform([artist_name])[0] if artist_name else label_encoders['artist_name'].transform(['unknown'])[0]
|
243 |
+
# except ValueError:
|
244 |
+
# encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
|
245 |
+
|
246 |
+
# return [encoded_tags, encoded_artist]
|
247 |
+
|
248 |
+
# def recommend_songs(tags, artist_name):
|
249 |
+
# encoded_input = encode_input(tags, artist_name)
|
250 |
+
# input_tensor = torch.tensor([encoded_input]).float()
|
251 |
+
# with torch.no_grad():
|
252 |
+
# output = model(input_tensor)
|
253 |
+
# recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
|
254 |
+
# recommendations = [index_to_song_title.get(idx, "Unknown song") for idx in recommendations_indices]
|
255 |
+
|
256 |
+
# feedback_html = []
|
257 |
+
# for idx, rec in enumerate(recommendations):
|
258 |
+
# feedback_html.append(f"{rec} <button onclick='record_feedback(\"{rec}\", \"up\")'>π</button> <button onclick='record_feedback(\"{rec}\", \"down\")'>π</button>")
|
259 |
+
# return "<br>".join(feedback_html)
|
260 |
+
|
261 |
+
# def record_feedback(recommendation, feedback):
|
262 |
+
# print(f"Recording feedback for: {recommendation}, Feedback: {feedback}") # Debugging statement
|
263 |
+
# with open("feedback_data.csv", "a") as file:
|
264 |
+
# file.write(f"{recommendation},{feedback}\n")
|
265 |
+
# print("Feedback recorded successfully.")
|
266 |
+
# return f"Feedback recorded for {recommendation}: {feedback}"
|
267 |
+
|
268 |
+
# interface = gr.Interface(
|
269 |
+
# fn=recommend_songs,
|
270 |
+
# inputs=[
|
271 |
+
# gr.Textbox(lines=2, placeholder="Enter Tags (e.g., rock, jazz)"),
|
272 |
+
# gr.Textbox(lines=2, placeholder="Enter Artist Name (optional)")
|
273 |
+
# ],
|
274 |
+
# outputs=gr.HTML(label="Recommendations"),
|
275 |
+
# title="Music Recommendation System",
|
276 |
+
# description="Enter tags and (optionally) artist name to get music recommendations. Click on thumbs up/down to provide feedback on each song.",
|
277 |
+
# allow_flagging="never",
|
278 |
+
# live=True
|
279 |
+
# )
|
280 |
+
|
281 |
+
# interface.launch()
|
282 |
+
|
283 |
import gradio as gr
|
284 |
import torch
|
285 |
import torch.nn as nn
|
286 |
from joblib import load
|
287 |
+
import numpy as np
|
288 |
+
import os
|
289 |
|
290 |
+
# Define the neural network model
|
291 |
class ImprovedSongRecommender(nn.Module):
|
292 |
def __init__(self, input_size, num_titles):
|
293 |
super(ImprovedSongRecommender, self).__init__()
|
|
|
313 |
# Load the trained model
|
314 |
model_path = "models/improved_model.pth"
|
315 |
num_unique_titles = 4855
|
316 |
+
model = ImprovedSongRecommender(input_size=2, num_titles=num_unique_titles)
|
|
|
317 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
318 |
model.eval()
|
319 |
|
320 |
# Load the label encoders and scaler
|
321 |
label_encoders_path = "data/new_label_encoders.joblib"
|
|
|
|
|
322 |
label_encoders = load(label_encoders_path)
|
|
|
|
|
|
|
|
|
323 |
|
324 |
def encode_input(tags, artist_name):
|
325 |
+
tags_list = [tag.strip() for tag in tags.split(',')]
|
326 |
+
encoded_tags_list = []
|
327 |
+
for tag in tags_list:
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
try:
|
329 |
+
encoded_tags_list.append(label_encoders['tags'].transform([tag])[0])
|
330 |
except ValueError:
|
331 |
+
encoded_tags_list.append(label_encoders['tags'].transform(['unknown'])[0])
|
332 |
+
|
333 |
+
encoded_tags = np.mean(encoded_tags_list).astype(int) if encoded_tags_list else label_encoders['tags'].transform(['unknown'])[0]
|
334 |
+
|
335 |
+
try:
|
336 |
+
encoded_artist = label_encoders['artist_name'].transform([artist_name])[0]
|
337 |
+
except ValueError:
|
338 |
encoded_artist = label_encoders['artist_name'].transform(['unknown'])[0]
|
339 |
|
340 |
return [encoded_tags, encoded_artist]
|
|
|
342 |
def recommend_songs(tags, artist_name):
|
343 |
encoded_input = encode_input(tags, artist_name)
|
344 |
input_tensor = torch.tensor([encoded_input]).float()
|
|
|
345 |
with torch.no_grad():
|
346 |
output = model(input_tensor)
|
|
|
347 |
recommendations_indices = torch.topk(output, 5).indices.squeeze().tolist()
|
348 |
+
recommendations = [label_encoders['title'].inverse_transform([idx])[0] for idx in recommendations_indices]
|
349 |
+
print("Recommendations:", recommendations) # Debugging statement
|
350 |
+
return recommendations
|
351 |
+
|
352 |
+
def record_feedback(recommendation, feedback):
|
353 |
+
feedback_path = "feedback_data.csv"
|
354 |
+
if not os.path.exists(feedback_path):
|
355 |
+
with open(feedback_path, 'w') as f:
|
356 |
+
f.write("Recommendation,Feedback\n")
|
357 |
+
with open(feedback_path, 'a') as f:
|
358 |
+
f.write(f"{recommendation},{feedback}\n")
|
359 |
+
return "Feedback recorded!"
|
360 |
+
|
361 |
+
app = gr.Blocks()
|
362 |
+
|
363 |
+
with app:
|
364 |
+
gr.Markdown("## Music Recommendation System")
|
365 |
+
tags_input = gr.Textbox(label="Enter Tags (e.g., rock, jazz, pop)", placeholder="rock, pop")
|
366 |
+
artist_name_input = gr.Textbox(label="Enter Artist Name (optional)", placeholder="The Beatles")
|
367 |
+
submit_button = gr.Button("Get Recommendations")
|
368 |
+
recommendations_output = gr.HTML(label="Recommendations")
|
369 |
+
feedback_input = gr.Radio(choices=["Thumbs Up", "Thumbs Down"], label="Feedback")
|
370 |
+
feedback_button = gr.Button("Submit Feedback")
|
371 |
+
feedback_result = gr.Label(label="Feedback Result")
|
372 |
+
|
373 |
+
def display_recommendations(tags, artist_name):
|
374 |
+
recommendations = recommend_songs(tags, artist_name)
|
375 |
+
if recommendations:
|
376 |
+
return recommendations
|
377 |
+
else:
|
378 |
+
return ["No recommendations found"]
|
379 |
+
|
380 |
+
submit_button.click(
|
381 |
+
fn=display_recommendations,
|
382 |
+
inputs=[tags_input, artist_name_input],
|
383 |
+
outputs=recommendations_output
|
384 |
+
)
|
385 |
+
|
386 |
+
feedback_button.click(
|
387 |
+
fn=record_feedback,
|
388 |
+
inputs=[recommendations_output, feedback_input],
|
389 |
+
outputs=feedback_result
|
390 |
+
)
|
391 |
+
|
392 |
+
app.launch()
|
flagged/log.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tags,artist_name,Recommendations,flag,username,timestamp
|
2 |
+
hipop,,"['Love Is All Around', 'Never Gonna Give You Up', 'Emergency (Album Version)', 'Soul', 'Intro']",,,2024-05-19 23:49:26.765199
|
3 |
+
"rock, pop",,[],,,2024-05-20 01:00:25.404739
|