File size: 11,183 Bytes
22df377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import base64
import io
import random
import time
from typing import List
from PIL import Image
import aiohttp
import asyncio
import requests
import streamlit as st
import requests
import zipfile
import io
import pandas as pd
from utils import icon
from streamlit_image_select import image_select
from PIL import Image
import random
import time
import base64
from typing import List
import aiohttp
import asyncio
import plotly.express as px
from common import set_page_container_style


def pil_image_to_base64(image: Image.Image) -> str:
    image_stream = io.BytesIO()
    image.save(image_stream, format="PNG")
    base64_image = base64.b64encode(image_stream.getvalue()).decode("utf-8")

    return base64_image


def get_or_create_eventloop():
    try:
        return asyncio.get_event_loop()
    except RuntimeError as ex:
        if "There is no current event loop in thread" in str(ex):
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
            return asyncio.get_event_loop()


model_config = {
    "RealisticVision": {
        "ratio": {
            "square": (512, 512),
            "tall": (512, 768),
            "wide": (768, 512),
        },
        "num_inference_steps": 30,
        "guidance_scale": 7.0,
        "clip_skip": 2,
    },
    "AnimeV3": {
        "num_inference_steps": 25,
        "guidance_scale": 7,
        "clip_skip": 2,
        "ratio": {
            "square": (1024, 1024),
            "tall": (672, 1024),
            "wide": (1024, 672),
        },
    },
    "DreamShaper": {
        "num_inference_steps": 35,
        "guidance_scale": 7,
        "clip_skip": 2,
        "ratio": {
            "square": (512, 512),
            "tall": (512, 768),
            "wide": (768, 512),
        },
    },
    "RealitiesEdgeXL": {
        "num_inference_steps": 7,
        "guidance_scale": 2.5,
        "clip_skip": 2,
        "ratio": {
            "square": (1024, 1024),
            "tall": (672, 1024),
            "wide": (1024, 672),
        },
    },
}


def base64_to_image(base64_string):
    return Image.open(io.BytesIO(base64.b64decode(base64_string)))


async def call_niche_api(url, data) -> List[Image.Image]:
    try:
        async with aiohttp.ClientSession() as session:
            async with session.post(url, json=data) as response:
                response = await response.json()
        return base64_to_image(response)
    except Exception as e:
        print(e)
        return None


async def get_output(url, datas):
    tasks = [asyncio.create_task(call_niche_api(url, data)) for data in datas]
    return await asyncio.gather(*tasks)


def main_page(
    submitted: bool,
    model_name: str,
    prompt: str,
    negative_prompt: str,
    aspect_ratio: str,
    num_images: int,
    uid: str,
    secret_key: str,
    seed: str,
    conditional_image: str,
    controlnet_conditioning_scale: list,
    pipeline_type: str,
    api_token: str,
    generated_images_placeholder,
) -> None:
    """Main page layout and logic for generating images.

    Args:
        submitted (bool): Flag indicating whether the form has been submitted.
        width (int): Width of the output image.
        height (int): Height of the output image.
        num_inference_steps (int): Number of denoising steps.
        guidance_scale (float): Scale for classifier-free guidance.
        prompt_strength (float): Prompt strength when using img2img/inpaint.
        prompt (str): Text prompt for the image generation.
        negative_prompt (str): Text prompt for elements to avoid in the image.
    """
    if submitted:
        if secret_key != api_token and uid != "-1":
            st.error("Invalid secret key")
            return
        try:
            uid = int(uid)
        except ValueError:
            uid = -1
        width, height = model_config[model_name]["ratio"][aspect_ratio.lower()]
        width = int(width)
        height = int(height)
        num_inference_steps = model_config[model_name]["num_inference_steps"]
        guidance_scale = model_config[model_name]["guidance_scale"]

        with st.status(
            "πŸ‘©πŸΎβ€πŸ³ Whipping up your words into art...", expanded=True
        ) as status:
            try:
                # Only call the API if the "Submit" button was pressed
                if submitted:
                    start_time = time.time()
                    # Calling the replicate API to get the image
                    with generated_images_placeholder.container():
                        try:
                            seed = int(seed)
                        except ValueError:
                            seed = -1
                        if seed >= 0:
                            seeds = [int(seed) + i for i in range(num_images)]
                        else:
                            seeds = [random.randint(0, 1e9) for _ in range(num_images)]
                        all_images = []  # List to store all generated images
                        data = {
                            "key": api_token,
                            "prompt": prompt,  # prompt
                            "model_name": model_name,  # See avaialble models in https://github.com/NicheTensor/NicheImage/blob/main/configs/model_config.yaml
                            "seed": seed,  # -1 means random seed
                            "miner_uid": int(
                                uid
                            ),  # specify miner uid, -1 means random miner selected by validator
                            "pipeline_type": pipeline_type,
                            "conditional_image": conditional_image,
                            "pipeline_params": {  # params feed to diffusers pipeline, see all params here https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__
                                "width": width,
                                "height": height,
                                "num_inference_steps": num_inference_steps,
                                "guidance_scale": guidance_scale,
                                "negative_prompt": negative_prompt,
                                "controlnet_conditioning_scale": controlnet_conditioning_scale,
                                "clip_skip": model_config[model_name]["clip_skip"],
                            },
                        }
                        duplicate_data = [data.copy() for _ in range(num_images)]
                        for i, d in enumerate(duplicate_data):
                            d["seed"] = seeds[i]
                        # Call the NicheImage API
                        loop = get_or_create_eventloop()
                        asyncio.set_event_loop(loop)
                        output = loop.run_until_complete(
                            get_output(
                                "http://proxy_client_nicheimage.nichetensor.com:10003/generate",
                                duplicate_data,
                            )
                        )
                        while len(output) < 4:
                            output.append(None)
                        for i, image in enumerate(output):
                            if not image:
                                output[i] = Image.new("RGB", (width, height), (0, 0, 0))
                        print(output)
                        if output:
                            st.toast("Your image has been generated!", icon="😍")
                            end_time = time.time()
                            status.update(
                                label=f"βœ… Images generated in {round(end_time-start_time, 3)} seconds",
                                state="complete",
                                expanded=False,
                            )

                            # Save generated image to session state
                            st.session_state.generated_image = output
                            captions = [f"Image {i+1} 🎈" for i in range(4)]
                            all_images = []
                            # Displaying the image
                            _, main_col, _ = st.columns([0.15, 0.7, 0.15])
                            with main_col:
                                cols_1 = st.columns(2)
                                cols_2 = st.columns(2)
                                with st.container(border=True):
                                    for i, image in enumerate(
                                        st.session_state.generated_image[:2]
                                    ):
                                        cols_1[i].image(
                                            image,
                                            caption=captions[i],
                                            use_column_width=True,
                                            output_format="PNG",
                                        )
                                        # Add image to the list
                                        all_images.append(image)
                                    for i, image in enumerate(
                                        st.session_state.generated_image[2:]
                                    ):
                                        cols_2[i].image(
                                            image,
                                            caption=captions[i + 2],
                                            use_column_width=True,
                                            output_format="PNG",
                                        )

                        # Save all generated images to session state
                        st.session_state.all_images = all_images
                        zip_io = io.BytesIO()
                        # Download option for each image
                        with zipfile.ZipFile(zip_io, "w") as zipf:
                            for i, image in enumerate(st.session_state.all_images):
                                image_data = io.BytesIO()
                                image.save(image_data, format="PNG")
                                image_data.seek(0)
                                # Write each image to the zip file with a name
                                zipf.writestr(
                                    f"output_file_{i+1}.png", image_data.read()
                                )
                        # Create a download button for the zip file
                        st.download_button(
                            ":red[**Download All Images**]",
                            data=zip_io.getvalue(),
                            file_name="output_files.zip",
                            mime="application/zip",
                            use_container_width=True,
                        )
                status.update(
                    label="βœ… Images generated!", state="complete", expanded=False
                )
            except Exception as e:
                print(e)
                st.error(f"Encountered an error: {e}", icon="🚨")

    # If not submitted, chill here 🍹
    else:
        pass