File size: 18,656 Bytes
9551276
b405c3d
3be135a
b405c3d
 
 
 
 
5e72808
b405c3d
5e72808
 
b405c3d
 
 
 
 
 
 
2bcefc7
b405c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14f07e7
 
 
 
2bcefc7
3be135a
14f07e7
 
 
5e72808
3be135a
b405c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e72808
b405c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b29290c
 
b405c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84672c4
b405c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ecdb24
b405c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
857496f
b405c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
857496f
b405c3d
8ecdb24
b405c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
import subprocess
import random
import numpy as np
import json
from datetime import timedelta
import tempfile
import re
import gradio as gr
import groq
from groq import Groq


# setup groq 

client = Groq(api_key=os.environ.get("Groq_Api_Key"))

def handle_groq_error(e, model_name):
    error_data = e.args[0]
    
    if isinstance(error_data, str):
        # Use regex to extract the JSON part of the string
        json_match = re.search(r'(\{.*\})', error_data)
        if json_match:
            json_str = json_match.group(1)
            # Ensure the JSON string is well-formed
            json_str = json_str.replace("'", '"')  # Replace single quotes with double quotes
            error_data = json.loads(json_str)

    if isinstance(e, groq.RateLimitError):
        if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']:
            error_message = error_data['error']['message']
            raise gr.Error(error_message)
    else:
        raise gr.Error(f"Error during Groq API call: {e}")
        

# llms

MAX_SEED = np.iinfo(np.int32).max

def update_max_tokens(model):
    if model in ["llama3-70b-8192", "llama3-8b-8192", "gemma-7b-it", "gemma2-9b-it"]:
        return gr.update(maximum=8192)
    elif model == "mixtral-8x7b-32768":
        return gr.update(maximum=32768)

def create_history_messages(history):
    history_messages = [{"role": "user", "content": m[0]} for m in history]
    history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
    return history_messages

def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
    messages = create_history_messages(history)
    messages.append({"role": "user", "content": prompt})
    print(messages)

    if seed == 0:
        seed = random.randint(1, MAX_SEED)

    try:
        stream = client.chat.completions.create(
            messages=messages,
            model=model,
            temperature=temperature,
            max_tokens=max_tokens,
            top_p=top_p,
            seed=seed,
            stop=None,
            stream=True,
        )

        response = ""
        for chunk in stream:
            delta_content = chunk.choices[0].delta.content
            if delta_content is not None:
                response += delta_content
                yield response

        return response
    except Groq.GroqApiException as e:
        handle_groq_error(e, model)

# speech to text

ALLOWED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
MAX_FILE_SIZE_MB = 25
CHUNK_SIZE_MB = 25 

LANGUAGE_CODES = {
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Māori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Panjabi": "pa",
    "Sinhala": "si",
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Norwegian Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "jw": "jw",
    "Sundanese": "su",
}


def split_audio(audio_file_path, chunk_size_mb):
    chunk_size = chunk_size_mb * 1024 * 1024  # Convert MB to bytes
    file_number = 1
    chunks = []
    with open(audio_file_path, 'rb') as f:
        chunk = f.read(chunk_size)
        while chunk:
            chunk_name = f"{os.path.splitext(audio_file_path)[0]}_part{file_number:03}.mp3" # Pad file number for correct ordering
            with open(chunk_name, 'wb') as chunk_file:
                chunk_file.write(chunk)
            chunks.append(chunk_name)
            file_number += 1
            chunk = f.read(chunk_size)
    return chunks

def merge_audio(chunks, output_file_path):
    with open("temp_list.txt", "w") as f:
        for file in chunks:
            f.write(f"file '{file}'\n")
    try:
        subprocess.run(
            [
                "ffmpeg",
                "-f",
                "concat",
                "-safe", "0",
                "-i",
                "temp_list.txt",
                "-c",
                "copy",
                "-y",
                output_file_path
            ],
            check=True
        )
        os.remove("temp_list.txt")
        for chunk in chunks:
            os.remove(chunk)
    except subprocess.CalledProcessError as e:
        raise gr.Error(f"Error during audio merging: {e}")

# Checks file extension, size, and downsamples or splits if needed.
def check_file(audio_file_path):
    if not audio_file_path:
        raise gr.Error("Please upload an audio file.")

    file_size_mb = os.path.getsize(audio_file_path) / (1024 * 1024)
    file_extension = audio_file_path.split(".")[-1].lower()

    if file_extension not in ALLOWED_FILE_EXTENSIONS:
        raise gr.Error(f"Invalid file type (.{file_extension}). Allowed types: {', '.join(ALLOWED_FILE_EXTENSIONS)}")

    if file_size_mb > MAX_FILE_SIZE_MB:
        gr.Warning(
            f"File size too large ({file_size_mb:.2f} MB). Attempting to downsample to 16kHz MP3 128kbps. Maximum size allowed: {MAX_FILE_SIZE_MB} MB"
        )

        output_file_path = os.path.splitext(audio_file_path)[0] + "_downsampled.mp3"
        try:
            subprocess.run(
                [
                    "ffmpeg",
                    "-i",
                    audio_file_path,
                    "-ar",
                    "16000",
                    "-ab",
                    "128k",
                    "-ac",
                    "1",
                    "-f",
                    "mp3", 
                    "-y",
                    output_file_path,
                ],
                check=True
            )

            # Check size after downsampling
            downsampled_size_mb = os.path.getsize(output_file_path) / (1024 * 1024)
            if downsampled_size_mb > MAX_FILE_SIZE_MB:
                gr.Warning(f"File still too large after downsampling ({downsampled_size_mb:.2f} MB). Splitting into {CHUNK_SIZE_MB} MB chunks.")
                return split_audio(output_file_path, CHUNK_SIZE_MB), "split" 

            return output_file_path, None
        except subprocess.CalledProcessError as e:
            raise gr.Error(f"Error during downsampling: {e}")
    return audio_file_path, None


def transcribe_audio(audio_file_path, model, prompt, language, auto_detect_language):
    processed_path, split_status = check_file(audio_file_path)
    full_transcription = ""

    if split_status == "split":
        processed_chunks = []
        for i, chunk_path in enumerate(processed_path):
            try:
                with open(chunk_path, "rb") as file:
                    transcription = client.audio.transcriptions.create(
                        file=(os.path.basename(chunk_path), file.read()),
                        model=model,
                        prompt=prompt,
                        response_format="text",
                        language=None if auto_detect_language else language,
                        temperature=0.0,
                    )
                full_transcription += transcription
                processed_chunks.append(chunk_path)
            except groq.RateLimitError as e: # Handle rate limit error
                handle_groq_error(e, model) 
                gr.Warning(f"API limit reached during chunk {i+1}. Returning processed chunks only.")
                if processed_chunks:
                    merge_audio(processed_chunks, 'merged_output.mp3')
                    return full_transcription, 'merged_output.mp3'
                else:
                    return "Transcription failed due to API limits.", None
        merge_audio(processed_path, 'merged_output.mp3')
        return full_transcription, 'merged_output.mp3'
    else:
        try:
            with open(processed_path, "rb") as file:
                transcription = client.audio.transcriptions.create(
                    file=(os.path.basename(processed_path), file.read()),
                    model=model,
                    prompt=prompt,
                    response_format="text",
                    language=None if auto_detect_language else language,
                    temperature=0.0,
                )
            return transcription, None
        except groq.RateLimitError as e:  # Handle rate limit error
            handle_groq_error(e, model)

def translate_audio(audio_file_path, model, prompt):
    processed_path, split_status = check_file(audio_file_path)
    full_translation = ""

    if split_status == "split":
        for chunk_path in processed_path:
            try:
                with open(chunk_path, "rb") as file:
                    translation = client.audio.translations.create(
                        file=(os.path.basename(chunk_path), file.read()),
                        model=model,
                        prompt=prompt,
                        response_format="text",
                        temperature=0.0,
                    )
                full_translation += translation
            except Groq.GroqApiException as e:
                handle_groq_error(e, model)
                return f"API limit reached. Partial translation: {full_translation}"
        return full_translation
    else:
        try:
            with open(processed_path, "rb") as file:
                translation = client.audio.translations.create(
                    file=(os.path.basename(processed_path), file.read()),
                    model=model,
                    prompt=prompt,
                    response_format="text",
                    temperature=0.0,
                )
            return translation
        except Groq.GroqApiException as e:
            handle_groq_error(e, model)
            

with gr.Blocks() as interface:
    gr.Markdown(
        """
    # Groq API UI
    Inference by Groq API 
    If you are having API Rate Limit issues, you can retry later based on the [rate limits](https://console.groq.com/docs/rate-limits) or <a href="https://huggingface.co/spaces/Nick088/Fast-Subtitle-Maker?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> with <a href=https://console.groq.com/keys>your own API Key</a> </p>
    Hugging Face Space by [Nick088](https://linktr.ee/Nick088)  
    <br> <a href="https://discord.gg/osai"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a>  
    """
    )
    with gr.Tabs():
        with gr.TabItem("LLMs"):
            with gr.Row():
                with gr.Column(scale=1, min_width=250):
                    model = gr.Dropdown(
                        choices=[
                            "llama3-70b-8192",
                            "llama3-8b-8192",
                            "mixtral-8x7b-32768",
                            "gemma-7b-it",
                            "gemma2-9b-it",
                        ],
                        value="llama3-70b-8192",
                        label="Model",
                    )
                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        value=0.5,
                        label="Temperature",
                        info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative.",
                    )
                    max_tokens = gr.Slider(
                        minimum=1,
                        maximum=8192,
                        step=1,
                        value=4096,
                        label="Max Tokens",
                        info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b.",
                    )
                    top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        value=0.5,
                        label="Top P",
                        info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p.",
                    )
                    seed = gr.Number(
                        precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random"
                    )
                    model.change(update_max_tokens, inputs=[model], outputs=max_tokens)
                with gr.Column(scale=1, min_width=400):
                    chatbot = gr.ChatInterface(
                        fn=generate_response,
                        chatbot=None,
                        additional_inputs=[
                            model,
                            temperature,
                            max_tokens,
                            top_p,
                            seed,
                        ],
                    )
                    model.change(update_max_tokens, inputs=[model], outputs=max_tokens)
        with gr.TabItem("Speech To Text"):
            with gr.Tabs():
                with gr.TabItem("Transcription"):
                    gr.Markdown("Transcript audio from files to text!")
                    with gr.Row():
                        audio_input = gr.File(
                            type="filepath", label="Upload File containing Audio", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS]
                        )
                        model_choice_transcribe = gr.Dropdown(
                            choices=["whisper-large-v3"],
                            value="whisper-large-v3",
                            label="Model",
                        )
                    with gr.Row():
                        transcribe_prompt = gr.Textbox(
                            label="Prompt (Optional)",
                            info="Specify any context or spelling corrections.",
                        )
                    with gr.Column():
                        language = gr.Dropdown(
                            choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()],
                            value="en",
                            label="Language",
                        )
                        auto_detect_language = gr.Checkbox(label="Auto Detect Language")
                    transcribe_button = gr.Button("Transcribe")
                    transcription_output = gr.Textbox(label="Transcription")
                    merged_audio_output = gr.File(label="Merged Audio (if chunked)")
                    transcribe_button.click(
                        transcribe_audio,
                        inputs=[audio_input, model_choice_transcribe, transcribe_prompt, language, auto_detect_language],
                        outputs=[transcription_output, merged_audio_output],
                    )
                with gr.TabItem("Translation"):
                    gr.Markdown("Transcript audio from files and translate them to English text!")
                    with gr.Row():
                        audio_input_translate = gr.File(
                            type="filepath", label="Upload File containing Audio", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS]
                        )
                        model_choice_translate = gr.Dropdown(
                            choices=["whisper-large-v3"],
                            value="whisper-large-v3",
                            label="Audio Speech Recognition (ASR) Model",
                        )
                    with gr.Row():
                        translate_prompt = gr.Textbox(
                            label="Prompt (Optional)",
                            info="Specify any context or spelling corrections.",
                        )
                    translate_button = gr.Button("Translate")
                    translation_output = gr.Textbox(label="Translation")
                    translate_button.click(
                        translate_audio,
                        inputs=[audio_input_translate, model_choice_translate, translate_prompt],
                        outputs=translation_output,
                    )
                    
                    
interface.launch(share=True)