Spaces:
Running
on
Zero
Running
on
Zero
Update infer.py
Browse files
infer.py
CHANGED
@@ -1,193 +1,3 @@
|
|
1 |
-
# import cv2
|
2 |
-
# from os.path import isfile, join
|
3 |
-
# import subprocess
|
4 |
-
# import os
|
5 |
-
# from RealESRGAN import RealESRGAN
|
6 |
-
# import torch
|
7 |
-
# import gradio as gr
|
8 |
-
|
9 |
-
# IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')
|
10 |
-
|
11 |
-
# def inference_image(image, size):
|
12 |
-
# global model2
|
13 |
-
# global model4
|
14 |
-
# global model8
|
15 |
-
# if image is None:
|
16 |
-
# raise gr.Error("Image not uploaded")
|
17 |
-
|
18 |
-
# width, height = image.size
|
19 |
-
# if width >= 5000 or height >= 5000:
|
20 |
-
# raise gr.Error("The image is too large.")
|
21 |
-
|
22 |
-
# if torch.cuda.is_available():
|
23 |
-
# torch.cuda.empty_cache()
|
24 |
-
|
25 |
-
# if size == '2x':
|
26 |
-
# try:
|
27 |
-
# result = model2.predict(image.convert('RGB'))
|
28 |
-
# except torch.cuda.OutOfMemoryError as e:
|
29 |
-
# print(e)
|
30 |
-
# model2 = RealESRGAN(device, scale=2)
|
31 |
-
# model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
|
32 |
-
# result = model2.predict(image.convert('RGB'))
|
33 |
-
# elif size == '4x':
|
34 |
-
# try:
|
35 |
-
# result = model4.predict(image.convert('RGB'))
|
36 |
-
# except torch.cuda.OutOfMemoryError as e:
|
37 |
-
# print(e)
|
38 |
-
# model4 = RealESRGAN(device, scale=4)
|
39 |
-
# model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
40 |
-
# result = model2.predict(image.convert('RGB'))
|
41 |
-
# else:
|
42 |
-
# try:
|
43 |
-
# result = model8.predict(image.convert('RGB'))
|
44 |
-
# except torch.cuda.OutOfMemoryError as e:
|
45 |
-
# print(e)
|
46 |
-
# model8 = RealESRGAN(device, scale=8)
|
47 |
-
# model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
48 |
-
# result = model2.predict(image.convert('RGB'))
|
49 |
-
|
50 |
-
# print(f"Frame of the Video size ({device}): {size} ... OK")
|
51 |
-
# return result
|
52 |
-
|
53 |
-
|
54 |
-
# # assign directory
|
55 |
-
# directory = 'videos' #PATH_WITH_INPUT_VIDEOS
|
56 |
-
# zee = 0
|
57 |
-
|
58 |
-
# def convert_frames_to_video(pathIn,pathOut,fps):
|
59 |
-
# global INPUT_DIR
|
60 |
-
# cap = cv2.VideoCapture(f'/{INPUT_DIR}/videos/input.mp4')
|
61 |
-
# fps = cap.get(cv2.CAP_PROP_FPS)
|
62 |
-
# frame_array = []
|
63 |
-
# files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))]
|
64 |
-
# #for sorting the file names properly
|
65 |
-
# files.sort(key = lambda x: int(x[5:-4]))
|
66 |
-
# size2 = (0,0)
|
67 |
-
|
68 |
-
# for i in range(len(files)):
|
69 |
-
# filename=pathIn + files[i]
|
70 |
-
# #reading each files
|
71 |
-
# img = cv2.imread(filename)
|
72 |
-
# height, width, layers = img.shape
|
73 |
-
# size = (width,height)
|
74 |
-
# size2 = size
|
75 |
-
# print(filename)
|
76 |
-
# #inserting the frames into an image array
|
77 |
-
# frame_array.append(img)
|
78 |
-
# out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size2)
|
79 |
-
# for i in range(len(frame_array)):
|
80 |
-
# # writing to a image array
|
81 |
-
# out.write(frame_array[i])
|
82 |
-
# out.release()
|
83 |
-
|
84 |
-
|
85 |
-
# for filename in os.listdir(directory):
|
86 |
-
|
87 |
-
# f = os.path.join(directory, filename)
|
88 |
-
# # checking if it is a file
|
89 |
-
# if os.path.isfile(f):
|
90 |
-
|
91 |
-
|
92 |
-
# print("PROCESSING :"+str(f)+"\n")
|
93 |
-
# # Read the video from specified path
|
94 |
-
|
95 |
-
# #video to frames
|
96 |
-
# cam = cv2.VideoCapture(str(f))
|
97 |
-
|
98 |
-
# try:
|
99 |
-
|
100 |
-
# # PATH TO STORE VIDEO FRAMES
|
101 |
-
# if not os.path.exists(f'/{INPUT_DIR}/upload/'):
|
102 |
-
# os.makedirs(f'/{INPUT_DIR}/upload/')
|
103 |
-
|
104 |
-
# # if not created then raise error
|
105 |
-
# except OSError:
|
106 |
-
# print ('Error: Creating directory of data')
|
107 |
-
|
108 |
-
# # frame
|
109 |
-
# currentframe = 0
|
110 |
-
|
111 |
-
|
112 |
-
# while(True):
|
113 |
-
|
114 |
-
# # reading from frame
|
115 |
-
# ret,frame = cam.read()
|
116 |
-
|
117 |
-
# if ret:
|
118 |
-
# # if video is still left continue creating images
|
119 |
-
# name = f'/{INPUT_DIR}/upload/frame' + str(currentframe) + '.jpg'
|
120 |
-
|
121 |
-
# # writing the extracted images
|
122 |
-
# cv2.imwrite(name, frame)
|
123 |
-
|
124 |
-
|
125 |
-
# # increasing counter so that it will
|
126 |
-
# # show how many frames are created
|
127 |
-
# currentframe += 1
|
128 |
-
# print(currentframe)
|
129 |
-
# else:
|
130 |
-
# #deletes all the videos you uploaded for upscaling
|
131 |
-
# #for f in os.listdir(video_folder):
|
132 |
-
# # os.remove(os.path.join(video_folder, f))
|
133 |
-
|
134 |
-
# break
|
135 |
-
|
136 |
-
# # Release all space and windows once done
|
137 |
-
# cam.release()
|
138 |
-
# cv2.destroyAllWindows()
|
139 |
-
|
140 |
-
# #apply super-resolution on all frames of a video
|
141 |
-
|
142 |
-
# # Specify the directory path
|
143 |
-
# all_frames_path = f"/{INPUT_DIR}/upload/"
|
144 |
-
|
145 |
-
# # Get a list of all files in the directory
|
146 |
-
# file_names = os.listdir(all_frames_path)
|
147 |
-
|
148 |
-
# # process the files
|
149 |
-
# for file_name in file_names:
|
150 |
-
# inference_image(f"/{INPUT_DIR}/upload/{file_name}")
|
151 |
-
|
152 |
-
|
153 |
-
# #convert super res frames to .avi
|
154 |
-
# pathIn = f'/{INPUT_DIR}/results/restored_imgs/'
|
155 |
-
|
156 |
-
# zee = zee+1
|
157 |
-
# fName = "video"+str(zee)
|
158 |
-
# filenameVid = f"{fName}.avi"
|
159 |
-
|
160 |
-
# pathOut = f"/{INPUT_DIR}/results_videos/"+filenameVid
|
161 |
-
|
162 |
-
# convert_frames_to_video(pathIn, pathOut, fps)
|
163 |
-
|
164 |
-
|
165 |
-
# #convert .avi to .mp4
|
166 |
-
# src = f'/{INPUT_DIR}/results_videos/'
|
167 |
-
# dst = f'/{INPUT_DIR}/results_mp4_videos/'
|
168 |
-
|
169 |
-
# for root, dirs, filenames in os.walk(src, topdown=False):
|
170 |
-
# #print(filenames)
|
171 |
-
# for filename in filenames:
|
172 |
-
# print('[INFO] 1',filename)
|
173 |
-
# try:
|
174 |
-
# _format = ''
|
175 |
-
# if ".flv" in filename.lower():
|
176 |
-
# _format=".flv"
|
177 |
-
# if ".mp4" in filename.lower():
|
178 |
-
# _format=".mp4"
|
179 |
-
# if ".avi" in filename.lower():
|
180 |
-
# _format=".avi"
|
181 |
-
# if ".mov" in filename.lower():
|
182 |
-
# _format=".mov"
|
183 |
-
|
184 |
-
# inputfile = os.path.join(root, filename)
|
185 |
-
# print('[INFO] 1',inputfile)
|
186 |
-
# outputfile = os.path.join(dst, filename.lower().replace(_format, ".mp4"))
|
187 |
-
# subprocess.call(['ffmpeg', '-i', inputfile, outputfile])
|
188 |
-
# except:
|
189 |
-
# print("An exception occurred")
|
190 |
-
|
191 |
from PIL import Image
|
192 |
import cv2 as cv
|
193 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
import cv2 as cv
|
3 |
import torch
|