Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,8 @@ from diffusers import StableDiffusion3Pipeline
|
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import transformers
|
|
|
6 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
7 |
-
from huggingface_hub import snapshot_download
|
8 |
import spaces
|
9 |
|
10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -16,18 +16,11 @@ else:
|
|
16 |
device = "cpu"
|
17 |
print("Using CPU")
|
18 |
|
19 |
-
# download sd3 medium weights
|
20 |
-
model_path = snapshot_download(
|
21 |
-
repo_id="stabilityai/stable-diffusion-3-medium",
|
22 |
-
revision="refs/pr/26",
|
23 |
-
repo_type="model",
|
24 |
-
ignore_patterns=["*.md", "*..gitattributes"],
|
25 |
-
local_dir="stable-diffusion-3-medium",
|
26 |
-
token=HF_TOKEN,
|
27 |
-
)
|
28 |
|
|
|
29 |
|
30 |
-
|
|
|
31 |
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
32 |
pipe.to(device)
|
33 |
|
@@ -81,15 +74,15 @@ enhance_prompt = gr.Checkbox(label="Prompt Enhancement", info="Enhance your prom
|
|
81 |
|
82 |
negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Ugly, bad anatomy...")
|
83 |
|
84 |
-
num_inference_steps = gr.Number(label="Number of Inference Steps", precision=0, value=25)
|
85 |
|
86 |
-
height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=
|
87 |
|
88 |
-
width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=
|
89 |
|
90 |
-
guidance_scale = gr.
|
91 |
|
92 |
-
seed = gr.Slider(value=42, minimum=0, maximum=
|
93 |
|
94 |
num_images_per_prompt = gr.Slider(label="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1)
|
95 |
|
|
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import transformers
|
6 |
+
import numpy as np
|
7 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
8 |
import spaces
|
9 |
|
10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
16 |
device = "cpu"
|
17 |
print("Using CPU")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
21 |
|
22 |
+
|
23 |
+
# Initialize the pipeline and download the sd3 medium model
|
24 |
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
25 |
pipe.to(device)
|
26 |
|
|
|
74 |
|
75 |
negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Ugly, bad anatomy...")
|
76 |
|
77 |
+
num_inference_steps = gr.Number(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", precision=0, value=25)
|
78 |
|
79 |
+
height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1344, step=32, value=1024)
|
80 |
|
81 |
+
width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1344, step=32, value=1024)
|
82 |
|
83 |
+
guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1)
|
84 |
|
85 |
+
seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
|
86 |
|
87 |
num_images_per_prompt = gr.Slider(label="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1)
|
88 |
|