import spaces import torch from diffusers import StableDiffusion3Pipeline import gradio as gr import os import random import transformers import numpy as np from transformers import T5Tokenizer, T5ForConditionalGeneration HF_TOKEN = os.getenv("HF_TOKEN") if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" # Initialize the pipeline and download the sd3 medium model pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16) pipe.to(device) # superprompt-v1 tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1") model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto") model.to(device) # toggle visibility the enhanced prompt output def update_visibility(enhance_prompt): return gr.update(visible=enhance_prompt) # Define the image generation function @spaces.GPU(duration=80) def generate_image(prompt, enhance_prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, progress=gr.Progress(track_tqdm=True)): if seed == 0: seed = random.randint(1, 2**32-1) if enhance_prompt: transformers.set_seed(seed) input_text = f"Expand the following prompt to add more detail: {prompt}" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) outputs = model.generate( input_ids, max_new_tokens=512, repetition_penalty=1.2, do_sample=True, temperature=0.7, top_p=1, top_k=50 ) prompt = tokenizer.decode(outputs[0], skip_special_tokens=True) generator = torch.Generator().manual_seed(seed) output = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, height=height, width=width, guidance_scale=guidance_scale, generator=generator, num_images_per_prompt=num_images_per_prompt ).images return output, prompt # Create the Gradio interface examples = [ ["A white car racing fast to the moon.", True], ["A woman in a red dress singing on top of a building.", True], ["An astrounat on mars in a futuristic cyborg suit.", True], ] css = ''' .gradio-container{max-width: 1000px !important} h1{text-align:center} ''' with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(): gr.HTML( """

Stable Diffusion 3 Medium Superprompt

""" ) gr.HTML( """ Made by Nick088
Discord """ ) with gr.Group(): with gr.Column(): prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...") enhance_prompt = gr.Checkbox(label="Prompt Enhancement with SuperPrompt-v1", value=True) run_button = gr.Button("Run") result = gr.Gallery(label="Generated AI Images", elem_id="gallery") better_prompt = gr.Textbox(label="Enhanced Prompt", info="The output of your enhanced prompt used for the Image Generation", visible=True) enhance_prompt.change(fn=update_visibility, inputs=enhance_prompt, outputs=better_prompt) with gr.Accordion("Advanced options", open=False): with gr.Row(): negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Ugly, bad anatomy...") with gr.Row(): num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1) guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1) with gr.Row(): width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1344, step=32, value=1024) height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1344, step=32, value=1024) with gr.Row(): seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") num_images_per_prompt = gr.Slider(label="Images Per Prompt", info="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=2) gr.Examples( examples=examples, fn=generate_image, inputs=[prompt, enhance_prompt, negative_prompt, num_inference_steps, guidance_scale, height, width, seed, num_images_per_prompt], outputs=[result, better_prompt], cache_examples=CACHE_EXAMPLES ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate_image, inputs=[ prompt, enhance_prompt, negative_prompt, num_inference_steps, width, height, guidance_scale, seed, num_images_per_prompt, ], outputs=[result, better_prompt], ) demo.queue().launch(share = False)