import spaces
import torch
from diffusers import StableDiffusion3Pipeline
import gradio as gr
import os
import random
import transformers
import numpy as np
from transformers import T5Tokenizer, T5ForConditionalGeneration
HF_TOKEN = os.getenv("HF_TOKEN")
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
# Initialize the pipeline and download the sd3 medium model
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipe.to(device)
# superprompt-v1
tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1")
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto")
model.to(device)
# toggle visibility the enhanced prompt output
def update_visibility(enhance_prompt):
return gr.update(visible=enhance_prompt)
# Define the image generation function
@spaces.GPU(duration=80)
def generate_image(prompt, enhance_prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, progress=gr.Progress(track_tqdm=True)):
if seed == 0:
seed = random.randint(1, 2**32-1)
if enhance_prompt:
transformers.set_seed(seed)
input_text = f"Expand the following prompt to add more detail: {prompt}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(
input_ids,
max_new_tokens=512,
repetition_penalty=1.2,
do_sample=True,
temperature=0.7,
top_p=1,
top_k=50
)
prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
generator = torch.Generator().manual_seed(seed)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=num_images_per_prompt
).images
return output, prompt
# Create the Gradio interface
examples = [
["A white car racing fast to the moon.", True],
["A woman in a red dress singing on top of a building.", True],
["An astrounat on mars in a futuristic cyborg suit.", True],
]
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
Stable Diffusion 3 Medium Superprompt
"""
)
gr.HTML(
"""
Made by Nick088
"""
)
with gr.Group():
with gr.Column():
prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...")
enhance_prompt = gr.Checkbox(label="Prompt Enhancement with SuperPrompt-v1", value=True)
run_button = gr.Button("Run")
result = gr.Gallery(label="Generated AI Images", elem_id="gallery")
better_prompt = gr.Textbox(label="Enhanced Prompt", info="The output of your enhanced prompt used for the Image Generation", visible=True)
enhance_prompt.change(fn=update_visibility, inputs=enhance_prompt, outputs=better_prompt)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Ugly, bad anatomy...")
with gr.Row():
num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1)
guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=10.0, value=7.5, step=0.1)
with gr.Row():
width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1344, step=32, value=1024)
height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1344, step=32, value=1024)
with gr.Row():
seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
num_images_per_prompt = gr.Slider(label="Images Per Prompt", info="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=2)
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt, enhance_prompt, negative_prompt, num_inference_steps, guidance_scale, height, width, seed, num_images_per_prompt],
outputs=[result, better_prompt],
cache_examples=CACHE_EXAMPLES
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate_image,
inputs=[
prompt,
enhance_prompt,
negative_prompt,
num_inference_steps,
width,
height,
guidance_scale,
seed,
num_images_per_prompt,
],
outputs=[result, better_prompt],
)
demo.queue().launch(share = False)