Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
import os | |
import gradio as gr | |
import torch | |
from PIL import Image, ImageEnhance | |
from pygltflib import GLTF2 | |
from pygltflib.utils import ImageFormat, Texture, Material, Image as GLTFImage | |
import spaces | |
if torch.cuda.is_available(): | |
device = "cuda" | |
print("Using GPU") | |
else: | |
device = "cpu" | |
print("Using CPU") | |
subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"]) | |
def run_inference(prompt, stable_diffusion_model, num_inference_steps, guidance_scale, model_precision_type, seed, output_image_name, verbose): | |
os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator") | |
if stable_diffusion_model == '2': | |
sd_model = "minecraft-skins" | |
else: | |
sd_model = "minecraft-skins-sdxl" | |
inference_command = f"python Python_Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {model_precision_type} {seed} {output_image_name} {'--verbose' if verbose else ''}" | |
os.system(inference_command) | |
os.chdir("..") | |
to3d_model_command = f"sh 64x32to64x64skin3dmodel.sh Stable_Diffusion_Finetuned_Minecraft_Skin_Generator/output_minecraft_skins/{output_image_name}" | |
os.system(to3d_model_command) | |
filename = "3d_model_player.glb" | |
gltf = GLTF2().load(filename) | |
# Step 1: Find the index of the existing texture you want to replace | |
# Let's assume the texture you want to replace is at index 1 (you need to replace 1 with the actual index) | |
existing_texture_index = 0 | |
# Check if the existing_texture_index is valid | |
if existing_texture_index < len(gltf.textures): | |
# Step 2: Remove the old texture and its associated image from the GLB | |
# Remove the texture | |
gltf.textures.pop(existing_texture_index) | |
# Remove the image associated with the texture | |
existing_image_index = gltf.materials[0].pbrMetallicRoughness.baseColorTexture.index | |
gltf.images.pop(existing_image_index) | |
# Step 3: Add the new image and texture to the GLB | |
# Create and add a new image to the glTF (same as before) | |
new_image = GLTFImage() | |
new_image.uri = os.path.join(f"Stable_Diffusion_Finetuned_Minecraft_Skin_Generator/output_minecraft_skins/{output_image_name}-converted.png") | |
gltf.images.append(new_image) | |
# Create a new texture and associate it with the added image | |
new_texture = Texture() | |
new_texture.source = len(gltf.images) - 1 # Index of the newly added image | |
new_texture.sampler = 0 | |
# set to nearest neighbor | |
gltf.textures.append(new_texture) | |
# Step 4: Assign the new texture to the appropriate material(s) or mesh(es) | |
# Assuming you have a mesh/primitive that was using the old texture and you want to apply the new texture to it, you need to set the material index for that mesh/primitive. | |
# Replace 0 with the actual index of the mesh/primitive you want to update. | |
gltf.materials[0].pbrMetallicRoughness.baseColorTexture.index = len(gltf.textures) - 1 | |
# Now you can convert the images to data URIs and save the updated GLB | |
gltf.convert_images(ImageFormat.DATAURI) | |
output_3d_model = "output_3d_model.glb" | |
gltf.save(output_3d_model) | |
else: | |
print("Invalid existing_texture_index") | |
# Return the generated image and the processed model | |
return os.path.join(f"Stable_Diffusion_Finetuned_Minecraft_Skin_Generator/output_minecraft_skins/{output_image_name}"), output_3d_model | |
# Define Gradio UI components | |
prompt = gr.Textbox(label="Your Prompt", info="What the Minecraft Skin should look like") | |
stable_diffusion_model = gr.Dropdown(['2', 'xl'], value="xl", label="Stable Diffusion Model", info="Choose which Stable Diffusion Model to use, xl understands prompts better") | |
num_inference_steps = gr.Number(label="Number of Inference Steps", precision=0, value=25) | |
guidance_scale = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference") | |
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results") | |
seed = gr.Number(value=42, label="Seed", info="A starting point to initiate generation, put 0 for a random one") | |
output_image_name = gr.Textbox(label="Output Image Name", info="The name of the file of the output image skin, keep the .png", value="output-skin.png") | |
verbose = gr.Checkbox(label="Verbose Output", info="Produce more detailed output while running", value=False) | |
# Create the Gradio interface | |
gr.Interface( | |
fn=run_inference, | |
inputs=[ | |
prompt, | |
stable_diffusion_model, | |
num_inference_steps, | |
guidance_scale, | |
model_precision_type, | |
seed, | |
output_image_name, | |
verbose | |
], | |
outputs=[ | |
gr.Image(label="Generated Minecraft Skin Image Asset"), | |
gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model") | |
], | |
title="Minecraft Skin Generator", | |
description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version!<br>Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator<br>Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)", | |
).launch(show_api=False, share=True) |