Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
import os | |
import gradio as gr | |
import torch | |
from PIL import Image, ImageEnhance | |
from pygltflib import GLTF2 | |
from pygltflib.utils import ImageFormat, Texture, Material, Image as GLTFImage | |
import sys | |
import spaces | |
if torch.cuda.is_available(): | |
device = "cuda" | |
print("Using GPU") | |
else: | |
device = "cpu" | |
print("Using CPU") | |
subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"]) | |
os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator") | |
def run_inference(prompt, stable_diffusion_model, num_inference_steps, guidance_scale, model_precision_type, seed, filename, verbose, see_in_3d): | |
if stable_diffusion_model == '2': | |
sd_model = "minecraft-skins" | |
else: | |
sd_model = "minecraft-skins-sdxl" | |
inference_command = f"python Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {model_precision_type} {seed} {filename} {'--verbose' if verbose else ''}" | |
os.system(inference_command) | |
# view it in 3d | |
if see_in_3d: | |
os.chdir("Scripts") | |
command_3d_model = f"python to_3d_model.py '{filename}'" | |
os.system(command_3d_model) | |
os.chdir("..") | |
glb_path = os.path.join(f"output_minecraft_skins/{filename}_3d_model.glb") | |
return os.path.join(f"output_minecraft_skins/{filename}"), glb_path | |
else: | |
return os.path.join(f"output_minecraft_skins/{filename}"), None | |
# Define Gradio UI components | |
prompt = gr.Textbox(label="Your Prompt", info="What the Minecraft Skin should look like") | |
stable_diffusion_model = gr.Dropdown(['2', 'xl'], value="xl", label="Stable Diffusion Model", info="Choose which Stable Diffusion Model to use, xl understands prompts better") | |
num_inference_steps = gr.Number(label="Number of Inference Steps", precision=0, value=25) | |
guidance_scale = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference") | |
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results") | |
seed = gr.Number(value=42, label="Seed", info="A starting point to initiate generation, put 0 for a random one") | |
filename = gr.Textbox(label="Output Image Name", info="The name of the file of the output image skin, keep the.png", value="output-skin.png") | |
verbose = gr.Checkbox(label="Verbose Output", info="Produce more detailed output while running", value=False) | |
see_in_3d = gr.Checkbox(label="See in 3D", info="View the generated skin in 3D", value=False) | |
# Create the Gradio interface | |
gr.Interface( | |
fn=run_inference, | |
inputs=[ | |
prompt, | |
stable_diffusion_model, | |
num_inference_steps, | |
guidance_scale, | |
model_precision_type, | |
seed, | |
filename, | |
verbose, | |
see_in_3d | |
], | |
outputs=[ | |
gr.Image(label="Generated Minecraft Skin Image Asset"), | |
gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model") | |
], | |
title="Minecraft Skin Generator", | |
description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version!<br>Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator<br>Credits: [Monadical-SAS](https://github.com/Monadical-SAS/minecraft_skin_generator) (Creators of the model), [Nick088](https://linktr.ee/Nick088) (Improving usage of the model), daroche (helping me fix the 3d model texture isue), [Brottweiler](https://gist.github.com/Brottweiler/483d0856c6692ef70cf90bf1a85ce364)(script to fix the 3d model texture, [meew](https://huggingface.co/spaces/meeww/Minecraft_Skin_Generator/blob/main/models/player_model.glb) (Minecraft Player 3d model)", | |
).launch(show_api=False, share=True) |