Nick1 commited on
Commit
5d04347
·
verified ·
1 Parent(s): 61c0314

Delete vc_infer_pipeline.py

Browse files
Files changed (1) hide show
  1. vc_infer_pipeline.py +0 -443
vc_infer_pipeline.py DELETED
@@ -1,443 +0,0 @@
1
- import numpy as np, parselmouth, torch, pdb, sys, os
2
- from time import time as ttime
3
- import torch.nn.functional as F
4
- import scipy.signal as signal
5
- import pyworld, os, traceback, faiss, librosa, torchcrepe
6
- from scipy import signal
7
- from functools import lru_cache
8
-
9
- now_dir = os.getcwd()
10
- sys.path.append(now_dir)
11
-
12
- bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
13
-
14
- input_audio_path2wav = {}
15
-
16
-
17
- @lru_cache
18
- def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
19
- audio = input_audio_path2wav[input_audio_path]
20
- f0, t = pyworld.harvest(
21
- audio,
22
- fs=fs,
23
- f0_ceil=f0max,
24
- f0_floor=f0min,
25
- frame_period=frame_period,
26
- )
27
- f0 = pyworld.stonemask(audio, f0, t, fs)
28
- return f0
29
-
30
-
31
- def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
32
- # print(data1.max(),data2.max())
33
- rms1 = librosa.feature.rms(
34
- y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
35
- ) # 每半秒一个点
36
- rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
37
- rms1 = torch.from_numpy(rms1)
38
- rms1 = F.interpolate(
39
- rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
40
- ).squeeze()
41
- rms2 = torch.from_numpy(rms2)
42
- rms2 = F.interpolate(
43
- rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
44
- ).squeeze()
45
- rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
46
- data2 *= (
47
- torch.pow(rms1, torch.tensor(1 - rate))
48
- * torch.pow(rms2, torch.tensor(rate - 1))
49
- ).numpy()
50
- return data2
51
-
52
-
53
- class VC(object):
54
- def __init__(self, tgt_sr, config):
55
- self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
56
- config.x_pad,
57
- config.x_query,
58
- config.x_center,
59
- config.x_max,
60
- config.is_half,
61
- )
62
- self.sr = 16000 # hubert输入采样率
63
- self.window = 160 # 每帧点数
64
- self.t_pad = self.sr * self.x_pad # 每条前后pad时间
65
- self.t_pad_tgt = tgt_sr * self.x_pad
66
- self.t_pad2 = self.t_pad * 2
67
- self.t_query = self.sr * self.x_query # 查询切点前后查询时间
68
- self.t_center = self.sr * self.x_center # 查询切点位置
69
- self.t_max = self.sr * self.x_max # 免查询时长阈值
70
- self.device = config.device
71
-
72
- def get_f0(
73
- self,
74
- input_audio_path,
75
- x,
76
- p_len,
77
- f0_up_key,
78
- f0_method,
79
- filter_radius,
80
- inp_f0=None,
81
- ):
82
- global input_audio_path2wav
83
- time_step = self.window / self.sr * 1000
84
- f0_min = 50
85
- f0_max = 1100
86
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
87
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
88
- if f0_method == "pm":
89
- f0 = (
90
- parselmouth.Sound(x, self.sr)
91
- .to_pitch_ac(
92
- time_step=time_step / 1000,
93
- voicing_threshold=0.6,
94
- pitch_floor=f0_min,
95
- pitch_ceiling=f0_max,
96
- )
97
- .selected_array["frequency"]
98
- )
99
- pad_size = (p_len - len(f0) + 1) // 2
100
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
101
- f0 = np.pad(
102
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
103
- )
104
- elif f0_method == "harvest":
105
- input_audio_path2wav[input_audio_path] = x.astype(np.double)
106
- f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
107
- if filter_radius > 2:
108
- f0 = signal.medfilt(f0, 3)
109
- elif f0_method == "crepe":
110
- model = "full"
111
- # Pick a batch size that doesn't cause memory errors on your gpu
112
- batch_size = 512
113
- # Compute pitch using first gpu
114
- audio = torch.tensor(np.copy(x))[None].float()
115
- f0, pd = torchcrepe.predict(
116
- audio,
117
- self.sr,
118
- self.window,
119
- f0_min,
120
- f0_max,
121
- model,
122
- batch_size=batch_size,
123
- device=self.device,
124
- return_periodicity=True,
125
- )
126
- pd = torchcrepe.filter.median(pd, 3)
127
- f0 = torchcrepe.filter.mean(f0, 3)
128
- f0[pd < 0.1] = 0
129
- f0 = f0[0].cpu().numpy()
130
- elif f0_method == "rmvpe":
131
- if hasattr(self, "model_rmvpe") == False:
132
- from rmvpe import RMVPE
133
-
134
- print("loading rmvpe model")
135
- self.model_rmvpe = RMVPE(
136
- "rmvpe.pt", is_half=self.is_half, device=self.device
137
- )
138
- f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
139
- f0 *= pow(2, f0_up_key / 12)
140
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
141
- tf0 = self.sr // self.window # 每秒f0点数
142
- if inp_f0 is not None:
143
- delta_t = np.round(
144
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
145
- ).astype("int16")
146
- replace_f0 = np.interp(
147
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
148
- )
149
- shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
150
- f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
151
- :shape
152
- ]
153
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
154
- f0bak = f0.copy()
155
- f0_mel = 1127 * np.log(1 + f0 / 700)
156
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
157
- f0_mel_max - f0_mel_min
158
- ) + 1
159
- f0_mel[f0_mel <= 1] = 1
160
- f0_mel[f0_mel > 255] = 255
161
- f0_coarse = np.rint(f0_mel).astype(np.int)
162
- return f0_coarse, f0bak # 1-0
163
-
164
- def vc(
165
- self,
166
- model,
167
- net_g,
168
- sid,
169
- audio0,
170
- pitch,
171
- pitchf,
172
- times,
173
- index,
174
- big_npy,
175
- index_rate,
176
- version,
177
- protect,
178
- ): # ,file_index,file_big_npy
179
- feats = torch.from_numpy(audio0)
180
- if self.is_half:
181
- feats = feats.half()
182
- else:
183
- feats = feats.float()
184
- if feats.dim() == 2: # double channels
185
- feats = feats.mean(-1)
186
- assert feats.dim() == 1, feats.dim()
187
- feats = feats.view(1, -1)
188
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
189
-
190
- inputs = {
191
- "source": feats.to(self.device),
192
- "padding_mask": padding_mask,
193
- "output_layer": 9 if version == "v1" else 12,
194
- }
195
- t0 = ttime()
196
- with torch.no_grad():
197
- logits = model.extract_features(**inputs)
198
- feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
199
- if protect < 0.5 and pitch != None and pitchf != None:
200
- feats0 = feats.clone()
201
- if (
202
- isinstance(index, type(None)) == False
203
- and isinstance(big_npy, type(None)) == False
204
- and index_rate != 0
205
- ):
206
- npy = feats[0].cpu().numpy()
207
- if self.is_half:
208
- npy = npy.astype("float32")
209
-
210
- # _, I = index.search(npy, 1)
211
- # npy = big_npy[I.squeeze()]
212
-
213
- score, ix = index.search(npy, k=8)
214
- weight = np.square(1 / score)
215
- weight /= weight.sum(axis=1, keepdims=True)
216
- npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
217
-
218
- if self.is_half:
219
- npy = npy.astype("float16")
220
- feats = (
221
- torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
222
- + (1 - index_rate) * feats
223
- )
224
-
225
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
226
- if protect < 0.5 and pitch != None and pitchf != None:
227
- feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
228
- 0, 2, 1
229
- )
230
- t1 = ttime()
231
- p_len = audio0.shape[0] // self.window
232
- if feats.shape[1] < p_len:
233
- p_len = feats.shape[1]
234
- if pitch != None and pitchf != None:
235
- pitch = pitch[:, :p_len]
236
- pitchf = pitchf[:, :p_len]
237
-
238
- if protect < 0.5 and pitch != None and pitchf != None:
239
- pitchff = pitchf.clone()
240
- pitchff[pitchf > 0] = 1
241
- pitchff[pitchf < 1] = protect
242
- pitchff = pitchff.unsqueeze(-1)
243
- feats = feats * pitchff + feats0 * (1 - pitchff)
244
- feats = feats.to(feats0.dtype)
245
- p_len = torch.tensor([p_len], device=self.device).long()
246
- with torch.no_grad():
247
- if pitch != None and pitchf != None:
248
- audio1 = (
249
- (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
250
- .data.cpu()
251
- .float()
252
- .numpy()
253
- )
254
- else:
255
- audio1 = (
256
- (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
257
- )
258
- del feats, p_len, padding_mask
259
- if torch.cuda.is_available():
260
- torch.cuda.empty_cache()
261
- t2 = ttime()
262
- times[0] += t1 - t0
263
- times[2] += t2 - t1
264
- return audio1
265
-
266
- def pipeline(
267
- self,
268
- model,
269
- net_g,
270
- sid,
271
- audio,
272
- input_audio_path,
273
- times,
274
- f0_up_key,
275
- f0_method,
276
- file_index,
277
- # file_big_npy,
278
- index_rate,
279
- if_f0,
280
- filter_radius,
281
- tgt_sr,
282
- resample_sr,
283
- rms_mix_rate,
284
- version,
285
- protect,
286
- f0_file=None,
287
- ):
288
- if (
289
- file_index != ""
290
- # and file_big_npy != ""
291
- # and os.path.exists(file_big_npy) == True
292
- and os.path.exists(file_index) == True
293
- and index_rate != 0
294
- ):
295
- try:
296
- index = faiss.read_index(file_index)
297
- # big_npy = np.load(file_big_npy)
298
- big_npy = index.reconstruct_n(0, index.ntotal)
299
- except:
300
- traceback.print_exc()
301
- index = big_npy = None
302
- else:
303
- index = big_npy = None
304
- audio = signal.filtfilt(bh, ah, audio)
305
- audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
306
- opt_ts = []
307
- if audio_pad.shape[0] > self.t_max:
308
- audio_sum = np.zeros_like(audio)
309
- for i in range(self.window):
310
- audio_sum += audio_pad[i : i - self.window]
311
- for t in range(self.t_center, audio.shape[0], self.t_center):
312
- opt_ts.append(
313
- t
314
- - self.t_query
315
- + np.where(
316
- np.abs(audio_sum[t - self.t_query : t + self.t_query])
317
- == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
318
- )[0][0]
319
- )
320
- s = 0
321
- audio_opt = []
322
- t = None
323
- t1 = ttime()
324
- audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
325
- p_len = audio_pad.shape[0] // self.window
326
- inp_f0 = None
327
- if hasattr(f0_file, "name") == True:
328
- try:
329
- with open(f0_file.name, "r") as f:
330
- lines = f.read().strip("\n").split("\n")
331
- inp_f0 = []
332
- for line in lines:
333
- inp_f0.append([float(i) for i in line.split(",")])
334
- inp_f0 = np.array(inp_f0, dtype="float32")
335
- except:
336
- traceback.print_exc()
337
- sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
338
- pitch, pitchf = None, None
339
- if if_f0 == 1:
340
- pitch, pitchf = self.get_f0(
341
- input_audio_path,
342
- audio_pad,
343
- p_len,
344
- f0_up_key,
345
- f0_method,
346
- filter_radius,
347
- inp_f0,
348
- )
349
- pitch = pitch[:p_len]
350
- pitchf = pitchf[:p_len]
351
- if self.device == "mps":
352
- pitchf = pitchf.astype(np.float32)
353
- pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
354
- pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
355
- t2 = ttime()
356
- times[1] += t2 - t1
357
- for t in opt_ts:
358
- t = t // self.window * self.window
359
- if if_f0 == 1:
360
- audio_opt.append(
361
- self.vc(
362
- model,
363
- net_g,
364
- sid,
365
- audio_pad[s : t + self.t_pad2 + self.window],
366
- pitch[:, s // self.window : (t + self.t_pad2) // self.window],
367
- pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
368
- times,
369
- index,
370
- big_npy,
371
- index_rate,
372
- version,
373
- protect,
374
- )[self.t_pad_tgt : -self.t_pad_tgt]
375
- )
376
- else:
377
- audio_opt.append(
378
- self.vc(
379
- model,
380
- net_g,
381
- sid,
382
- audio_pad[s : t + self.t_pad2 + self.window],
383
- None,
384
- None,
385
- times,
386
- index,
387
- big_npy,
388
- index_rate,
389
- version,
390
- protect,
391
- )[self.t_pad_tgt : -self.t_pad_tgt]
392
- )
393
- s = t
394
- if if_f0 == 1:
395
- audio_opt.append(
396
- self.vc(
397
- model,
398
- net_g,
399
- sid,
400
- audio_pad[t:],
401
- pitch[:, t // self.window :] if t is not None else pitch,
402
- pitchf[:, t // self.window :] if t is not None else pitchf,
403
- times,
404
- index,
405
- big_npy,
406
- index_rate,
407
- version,
408
- protect,
409
- )[self.t_pad_tgt : -self.t_pad_tgt]
410
- )
411
- else:
412
- audio_opt.append(
413
- self.vc(
414
- model,
415
- net_g,
416
- sid,
417
- audio_pad[t:],
418
- None,
419
- None,
420
- times,
421
- index,
422
- big_npy,
423
- index_rate,
424
- version,
425
- protect,
426
- )[self.t_pad_tgt : -self.t_pad_tgt]
427
- )
428
- audio_opt = np.concatenate(audio_opt)
429
- if rms_mix_rate != 1:
430
- audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
431
- if resample_sr >= 16000 and tgt_sr != resample_sr:
432
- audio_opt = librosa.resample(
433
- audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
434
- )
435
- audio_max = np.abs(audio_opt).max() / 0.99
436
- max_int16 = 32768
437
- if audio_max > 1:
438
- max_int16 /= audio_max
439
- audio_opt = (audio_opt * max_int16).astype(np.int16)
440
- del pitch, pitchf, sid
441
- if torch.cuda.is_available():
442
- torch.cuda.empty_cache()
443
- return audio_opt