File size: 8,035 Bytes
5a510e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# pylint: disable=R0901
# src/models/wav2vec.py
"""
This module defines the Wav2Vec model, which is a pre-trained model for speech recognition and understanding.
It inherits from the Wav2Vec2Model class in the transformers library and provides additional functionalities
such as feature extraction and encoding.
Classes:
Wav2VecModel: Inherits from Wav2Vec2Model and adds additional methods for feature extraction and encoding.
Functions:
linear_interpolation: Interpolates the features based on the sequence length.
"""
import torch.nn.functional as F
from transformers import Wav2Vec2Model
from transformers.modeling_outputs import BaseModelOutput
class Wav2VecModel(Wav2Vec2Model):
"""
Wav2VecModel is a custom model class that extends the Wav2Vec2Model class from the transformers library.
It inherits all the functionality of the Wav2Vec2Model and adds additional methods for feature extraction and encoding.
...
Attributes:
base_model (Wav2Vec2Model): The base Wav2Vec2Model object.
Methods:
forward(input_values, seq_len, attention_mask=None, mask_time_indices=None
, output_attentions=None, output_hidden_states=None, return_dict=None):
Forward pass of the Wav2VecModel.
It takes input_values, seq_len, and other optional parameters as input and returns the output of the base model.
feature_extract(input_values, seq_len):
Extracts features from the input_values using the base model.
encode(extract_features, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None):
Encodes the extracted features using the base model and returns the encoded features.
"""
def forward(
self,
input_values,
seq_len,
attention_mask=None,
mask_time_indices=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
"""
Forward pass of the Wav2Vec model.
Args:
self: The instance of the model.
input_values: The input values (waveform) to the model.
seq_len: The sequence length of the input values.
attention_mask: Attention mask to be used for the model.
mask_time_indices: Mask indices to be used for the model.
output_attentions: If set to True, returns attentions.
output_hidden_states: If set to True, returns hidden states.
return_dict: If set to True, returns a BaseModelOutput instead of a tuple.
Returns:
The output of the Wav2Vec model.
"""
self.config.output_attentions = True
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
extract_features = linear_interpolation(extract_features, seq_len=seq_len)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.adapter is not None:
hidden_states = self.adapter(hidden_states)
if not return_dict:
return (hidden_states, ) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def feature_extract(
self,
input_values,
seq_len,
):
"""
Extracts features from the input values and returns the extracted features.
Parameters:
input_values (torch.Tensor): The input values to be processed.
seq_len (torch.Tensor): The sequence lengths of the input values.
Returns:
extracted_features (torch.Tensor): The extracted features from the input values.
"""
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
extract_features = linear_interpolation(extract_features, seq_len=seq_len)
return extract_features
def encode(
self,
extract_features,
attention_mask=None,
mask_time_indices=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
"""
Encodes the input features into the output space.
Args:
extract_features (torch.Tensor): The extracted features from the audio signal.
attention_mask (torch.Tensor, optional): Attention mask to be used for padding.
mask_time_indices (torch.Tensor, optional): Masked indices for the time dimension.
output_attentions (bool, optional): If set to True, returns the attention weights.
output_hidden_states (bool, optional): If set to True, returns all hidden states.
return_dict (bool, optional): If set to True, returns a BaseModelOutput instead of the tuple.
Returns:
The encoded output features.
"""
self.config.output_attentions = True
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.adapter is not None:
hidden_states = self.adapter(hidden_states)
if not return_dict:
return (hidden_states, ) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def linear_interpolation(features, seq_len):
"""
Transpose the features to interpolate linearly.
Args:
features (torch.Tensor): The extracted features to be interpolated.
seq_len (torch.Tensor): The sequence lengths of the features.
Returns:
torch.Tensor: The interpolated features.
"""
features = features.transpose(1, 2)
output_features = F.interpolate(features, size=seq_len, align_corners=True, mode='linear')
return output_features.transpose(1, 2)
|