Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,9 +7,9 @@ import re
|
|
7 |
from tensorflow.keras.models import load_model
|
8 |
|
9 |
# Load long model
|
10 |
-
with open('lstm-qa-long-answers-model/tokenizer.pickle', 'rb') as handle:
|
11 |
-
|
12 |
-
long_answer_model = load_model('lstm-qa-long-answers-model/model.h5')
|
13 |
|
14 |
def clean_text(text):
|
15 |
text = re.sub(r'<.*?>', '', text)
|
@@ -21,49 +21,42 @@ def remove_parentheses(text):
|
|
21 |
pattern = r'\([^)]*\)'
|
22 |
return re.sub(pattern, '', text)
|
23 |
|
24 |
-
def split_into_sentences(text):
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
def predict_answer(context, question):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
# Load short model
|
51 |
-
|
|
|
52 |
|
53 |
# Function to answer on all models
|
54 |
def answer_questions(context, question):
|
55 |
-
long_score, long_answer = predict_answer(context, question)
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# short_context = long_answer
|
60 |
-
# else:
|
61 |
-
# # If no, use the original context
|
62 |
-
# short_context = remove_parentheses(context)
|
63 |
-
|
64 |
-
# short_answer_result = short_answer_model(question=question, context=short_context)
|
65 |
-
short_answer_result = short_answer_model(question=question, context=remove_parentheses(context))
|
66 |
-
return short_answer_result['answer'], short_answer_result['score'], long_answer, long_score
|
67 |
|
68 |
# App Interface
|
69 |
with gr.Blocks() as app:
|
@@ -76,15 +69,15 @@ with gr.Blocks() as app:
|
|
76 |
gr.ClearButton([context_input,question_input])
|
77 |
with gr.Column():
|
78 |
with gr.Row():
|
79 |
-
with gr.Column(scale=
|
80 |
-
short_answer_output = gr.Textbox(lines=5, label="Distil BERT
|
81 |
-
with gr.Column(scale=
|
82 |
-
short_score_output = gr.Number(label="
|
83 |
with gr.Row():
|
84 |
-
with gr.Column(scale=
|
85 |
-
long_answer_output = gr.Textbox(lines=5, label="
|
86 |
-
with gr.Column(scale=
|
87 |
-
long_score_output = gr.Number(label="
|
88 |
|
89 |
submit_btn.click(fn=answer_questions, inputs=[context_input, question_input], outputs=[short_answer_output, short_score_output, long_answer_output, long_score_output])
|
90 |
examples='examples'
|
|
|
7 |
from tensorflow.keras.models import load_model
|
8 |
|
9 |
# Load long model
|
10 |
+
# with open('lstm-qa-long-answers-model/tokenizer.pickle', 'rb') as handle:
|
11 |
+
# tokenizer = pickle.load(handle)
|
12 |
+
# long_answer_model = load_model('lstm-qa-long-answers-model/model.h5')
|
13 |
|
14 |
def clean_text(text):
|
15 |
text = re.sub(r'<.*?>', '', text)
|
|
|
21 |
pattern = r'\([^)]*\)'
|
22 |
return re.sub(pattern, '', text)
|
23 |
|
24 |
+
# def split_into_sentences(text):
|
25 |
+
# sentences = re.split(r'\.\s*', text)
|
26 |
+
# return [s.strip() for s in sentences if s]
|
27 |
|
28 |
+
# def predict_answer(context, question):
|
29 |
+
# sentences = split_into_sentences(context)
|
30 |
+
# best_sentence = None
|
31 |
+
# best_score = 0
|
32 |
|
33 |
+
# for sentence in sentences:
|
34 |
+
# clean_sentence = clean_text(sentence)
|
35 |
+
# question_seq = tokenizer.texts_to_sequences([question])
|
36 |
+
# sentence_seq = tokenizer.texts_to_sequences([clean_sentence])
|
37 |
|
38 |
+
# max_sentence_length = 300
|
39 |
+
# padded_question = pad_sequences(question_seq, padding='post')
|
40 |
+
# padded_sentence = pad_sequences(sentence_seq, maxlen=max_sentence_length, padding='post', truncating='post')
|
41 |
|
42 |
+
# score = long_answer_model.predict([padded_sentence, padded_question])[0]
|
43 |
|
44 |
+
# if score > best_score:
|
45 |
+
# best_score = score
|
46 |
+
# best_sentence = clean_sentence
|
47 |
|
48 |
+
# return best_score, best_sentence
|
49 |
|
50 |
# Load short model
|
51 |
+
distilbert_base_uncased = pipeline(model="Nighter/QA_wiki_data_short_answer", from_tf=True)
|
52 |
+
bert_base_uncased = pipeline(model="Nighter/QA_bert_base_uncased_wiki_data_short_answer", from_tf=True)
|
53 |
|
54 |
# Function to answer on all models
|
55 |
def answer_questions(context, question):
|
56 |
+
# long_score, long_answer = predict_answer(context, question)
|
57 |
+
distilbert_base_uncased_result = distilbert_base_uncased(question=question, context=remove_parentheses(context))
|
58 |
+
bert_base_uncased_result =bert_base_uncased(question=question, context=remove_parentheses(context))
|
59 |
+
return distilbert_base_uncased_result['answer'], distilbert_base_uncased_result['score'], bert_base_uncased_result['answer'], bert_base_uncased_result['score'] #, long_answer, long_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# App Interface
|
62 |
with gr.Blocks() as app:
|
|
|
69 |
gr.ClearButton([context_input,question_input])
|
70 |
with gr.Column():
|
71 |
with gr.Row():
|
72 |
+
with gr.Column(scale=6):
|
73 |
+
short_answer_output = gr.Textbox(lines=5, label="Distil BERT Base Uncased")
|
74 |
+
with gr.Column(scale=2):
|
75 |
+
short_score_output = gr.Number(label="Distil BERT Base Uncased Score")
|
76 |
with gr.Row():
|
77 |
+
with gr.Column(scale=6):
|
78 |
+
long_answer_output = gr.Textbox(lines=5, label="BERT Base Uncased")
|
79 |
+
with gr.Column(scale=2):
|
80 |
+
long_score_output = gr.Number(label="BERT Base Uncased Score")
|
81 |
|
82 |
submit_btn.click(fn=answer_questions, inputs=[context_input, question_input], outputs=[short_answer_output, short_score_output, long_answer_output, long_score_output])
|
83 |
examples='examples'
|