Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
from datasets import load_dataset
|
5 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
6 |
+
|
7 |
+
# (You may need to install Streamlit if you haven't already: pip install streamlit)
|
8 |
+
LANG_ID = "en"
|
9 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
|
10 |
+
|
11 |
+
st.title("Speech Recognition App") # Give your app a title
|
12 |
+
|
13 |
+
# Load the model and processor (do this outside the main function for efficiency)
|
14 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
15 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
16 |
+
|
17 |
+
def speech_file_to_array_fn(audio_file):
|
18 |
+
speech_array, sampling_rate = librosa.load(audio_file, sr=16_000)
|
19 |
+
return speech_array
|
20 |
+
|
21 |
+
def process_audio(speech_array):
|
22 |
+
inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
|
23 |
+
with torch.no_grad():
|
24 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
25 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
26 |
+
predicted_sentence = processor.batch_decode(predicted_ids)[0]
|
27 |
+
return predicted_sentence
|
28 |
+
def main():
|
29 |
+
uploaded_file = st.file_uploader("Choose an audio file (.wav format)", type='wav')
|
30 |
+
|
31 |
+
if uploaded_file is not None:
|
32 |
+
speech_array = speech_file_to_array_fn(uploaded_file)
|
33 |
+
predicted_sentence = process_audio(speech_array)
|
34 |
+
|
35 |
+
st.header("Prediction:")
|
36 |
+
st.write(predicted_sentence)
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
main()
|