Nikhil0987 commited on
Commit
7a25cf3
·
verified ·
1 Parent(s): faf7306

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import librosa
4
+ from datasets import load_dataset
5
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
6
+
7
+ # (You may need to install Streamlit if you haven't already: pip install streamlit)
8
+ LANG_ID = "en"
9
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
10
+
11
+ st.title("Speech Recognition App") # Give your app a title
12
+
13
+ # Load the model and processor (do this outside the main function for efficiency)
14
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
15
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
16
+
17
+ def speech_file_to_array_fn(audio_file):
18
+ speech_array, sampling_rate = librosa.load(audio_file, sr=16_000)
19
+ return speech_array
20
+
21
+ def process_audio(speech_array):
22
+ inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
23
+ with torch.no_grad():
24
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
25
+ predicted_ids = torch.argmax(logits, dim=-1)
26
+ predicted_sentence = processor.batch_decode(predicted_ids)[0]
27
+ return predicted_sentence
28
+ def main():
29
+ uploaded_file = st.file_uploader("Choose an audio file (.wav format)", type='wav')
30
+
31
+ if uploaded_file is not None:
32
+ speech_array = speech_file_to_array_fn(uploaded_file)
33
+ predicted_sentence = process_audio(speech_array)
34
+
35
+ st.header("Prediction:")
36
+ st.write(predicted_sentence)
37
+
38
+ if __name__ == "__main__":
39
+ main()