import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Load the model and tokenizer from Hugging Face @st.cache_resource def load_model(): model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" # Replace with your model name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return model, tokenizer model, tokenizer = load_model() # Create the pipeline for text generation generator = pipeline("text-generation", model=model, tokenizer=tokenizer) # Streamlit app title st.title("Question Answering with Hugging Face Model") # User input question = st.text_input("Enter your question:") # Button to generate the answer if st.button("Generate Answer"): if question: prompt = f"Question: {question}\nAnswer: Let's think step by step." result = generator(prompt, max_length=100, do_sample=True, top_k=10) st.text_area("Generated Answer:", value=result[0]['generated_text'], height=200) else: st.warning("Please enter a question.")