Spaces:
Build error
Build error
from torch import nn | |
class Generator(nn.Module): | |
# Refer to the link below for explanations about nc, nz, and ngf | |
# https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html#inputs | |
def __init__(self, nc=4, nz=100, ngf=64): | |
super(Generator, self).__init__() | |
self.network = nn.Sequential( | |
nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False), | |
nn.BatchNorm2d(ngf * 4), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False), | |
nn.BatchNorm2d(ngf * 2), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False), | |
nn.BatchNorm2d(ngf), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), | |
nn.Tanh(), | |
) | |
def forward(self, input): | |
output = self.network(input) | |
return output | |
from huggingface_hub import hf_hub_download | |
import torch | |
model = Generator() | |
weights_path = hf_hub_download('nateraw/cryptopunks-gan', 'generator.pth') | |
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'))) # Use 'cuda' if you have a GPU available | |
from torchvision.utils import save_image | |
def predict(seed): | |
num_punks = 4 | |
torch.manual_seed(seed) | |
z = torch.randn(num_punks, 100, 1, 1) | |
punks = model(z) | |
save_image(punks, "punks.png", normalize=True) | |
return 'punks.png' | |
import gradio as gr | |
gr.Interface( | |
predict, | |
inputs=[ | |
gr.inputs.Slider(label='Seed', minimum=0, maximum=1000, default=42), | |
], | |
outputs="image", | |
css=".footer{display:none !important}", | |
).launch() | |