File size: 7,071 Bytes
4a303ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import tensorflow as tf
from keras import regularizers
from keras.layers import Input, Dense, Dropout, Activation, Conv1D
from keras.layers import GlobalAveragePooling1D, AveragePooling1D
from keras.layers import Bidirectional, LSTM
from keras import Model
from keras.metrics import MeanSquaredError

import pandas as pd
import numpy as np

import requests
from functools import reduce
from operator import add
import tabulate
from difflib import SequenceMatcher

import cyvcf2
import parasail

import re

ntmap = {'A': (1, 0, 0, 0),
         'C': (0, 1, 0, 0),
         'G': (0, 0, 1, 0),
         'T': (0, 0, 0, 1)
         }

def get_seqcode(seq):
    return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape((1, len(seq), -1))

def BiLSTM_model(input_shape):
    input = Input(shape=input_shape)

    conv1 = Conv1D(128, 5, activation="relu")(input)
    pool1 = AveragePooling1D(2)(conv1)
    drop1 = Dropout(0.1)(pool1)

    conv2 = Conv1D(128, 5, activation="relu")(drop1)
    pool2 = AveragePooling1D(2)(conv2)
    drop2 = Dropout(0.1)(pool2)

    lstm1 = Bidirectional(LSTM(128,
                               dropout=0.1,
                               activation='tanh',
                               return_sequences=True,
                               kernel_regularizer=regularizers.l2(1e-4)))(drop2)
    avgpool = GlobalAveragePooling1D()(lstm1)

    dense1 = Dense(128,
                   kernel_regularizer=regularizers.l2(1e-4),
                   bias_regularizer=regularizers.l2(1e-4),
                   activation="relu")(avgpool)
    drop3 = Dropout(0.1)(dense1)

    dense2 = Dense(32,
                   kernel_regularizer=regularizers.l2(1e-4),
                   bias_regularizer=regularizers.l2(1e-4),
                   activation="relu")(drop3)
    drop4 = Dropout(0.1)(dense2)

    dense3 = Dense(32,
                   kernel_regularizer=regularizers.l2(1e-4),
                   bias_regularizer=regularizers.l2(1e-4),
                   activation="relu")(drop4)
    drop5 = Dropout(0.1)(dense3)

    output = Dense(1, activation="linear")(drop5)

    model = Model(inputs=[input], outputs=[output])
    return model

def fetch_ensembl_transcripts(gene_symbol):
    url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
    response = requests.get(url)
    if response.status_code == 200:
        gene_data = response.json()
        if 'Transcript' in gene_data:
            return gene_data['Transcript']
        else:
            print("No transcripts found for gene:", gene_symbol)
            return None
    else:
        print(f"Error fetching gene data from Ensembl: {response.text}")
        return None

def fetch_ensembl_sequence(transcript_id):
    url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
    response = requests.get(url)
    if response.status_code == 200:
        sequence_data = response.json()
        if 'seq' in sequence_data:
            return sequence_data['seq']
        else:
            print("No sequence found for transcript:", transcript_id)
            return None
    else:
        print(f"Error fetching sequence data from Ensembl: {response.text}")
        return None

def find_crispr_targets(sequence, chr, start, end, strand, transcript_id, exon_id, pam="TTTN", target_length=34):
    targets = []
    len_sequence = len(sequence)
    #complement = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
    dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'}

    for i in range(len_sequence - target_length + 1):
        target_seq = sequence[i:i + target_length]
        if target_seq[4:7] == 'TTT':
            if strand == -1:
                tar_start = end - i - target_length + 1
                tar_end = end -i
                #seq_in_ref = ''.join([complement[base] for base in target_seq])[::-1]
            else:
                tar_start = start + i
                tar_end = start + i + target_length - 1
                #seq_in_ref = target_seq
            gRNA = ''.join([dnatorna[base] for base in target_seq[8:28]])
            targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id, exon_id])
            #targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id, exon_id, seq_in_ref])
    return targets

def format_prediction_output(targets, model_path):
    # Loading weights for the model
    Crispr_BiLSTM = BiLSTM_model(input_shape=(34, 4))
    Crispr_BiLSTM.load_weights(model_path)

    formatted_data = []
    for target in targets:
        # Predict
        encoded_seq = get_seqcode(target[0])
        prediction = float(list(Crispr_BiLSTM.predict(encoded_seq, verbose=0)[0])[0])
        if prediction > 100:
            prediction = 100

        # Format output
        gRNA = target[1]
        chr = target[2]
        start = target[3]
        end = target[4]
        strand = target[5]
        transcript_id = target[6]
        exon_id = target[7]
        #seq_in_ref = target[8]
        #formatted_data.append([chr, start, end, strand, transcript_id, exon_id, target[0], gRNA, seq_in_ref, prediction])
        formatted_data.append([chr, start, end, strand, transcript_id, exon_id, target[0], gRNA, prediction])

    return formatted_data


def process_gene(gene_symbol, model_path):
    transcripts = fetch_ensembl_transcripts(gene_symbol)
    results = []
    all_exons = []  # To accumulate all exons
    all_gene_sequences = []  # To accumulate all gene sequences

    if transcripts:
        for transcript in transcripts:
            Exons = transcript['Exon']
            all_exons.extend(Exons)  # Add all exons from this transcript to the list
            transcript_id = transcript['id']

            for Exon in Exons:
                exon_id = Exon['id']
                gene_sequence = fetch_ensembl_sequence(exon_id)
                if gene_sequence:
                    all_gene_sequences.append(gene_sequence)  # Add this gene sequence to the list
                    chr = Exon['seq_region_name']
                    start = Exon['start']
                    end = Exon['end']
                    strand = Exon['strand']

                    targets = find_crispr_targets(gene_sequence, chr, start, end, strand, transcript_id, exon_id)
                    if targets:
                        # Predict on-target efficiency for each gRNA site
                        formatted_data = format_prediction_output(targets, model_path)
                        results.extend(formatted_data)  # Flatten the results
                else:
                    print(f"Failed to retrieve gene sequence for exon {exon_id}.")
    else:
        print("Failed to retrieve transcripts.")

    # Sort results based on prediction score (assuming score is at the 8th index)
    sorted_results = sorted(results, key=lambda x: x[8], reverse=True)

    # Return the sorted output, combined gene sequences, and all exons
    return sorted_results, all_gene_sequences, all_exons