Spaces:
Sleeping
Sleeping
File size: 14,884 Bytes
4a303ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
import random
import tabulate
from keras import Model
from keras import regularizers
from keras.optimizers import Adam
from keras.layers import Conv2D, BatchNormalization, ReLU, Input, Flatten, Softmax
from keras.layers import Concatenate, Activation, Dense, GlobalAveragePooling2D, Dropout
from keras.layers import AveragePooling1D, Bidirectional, LSTM, GlobalAveragePooling1D, MaxPool1D, Reshape
from keras.layers import LayerNormalization, Conv1D, MultiHeadAttention, Layer
from keras.models import load_model
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
import cyvcf2
import parasail
import re
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape((1, len(seq), -1))
class PositionalEncoding(Layer):
def __init__(self, sequence_len=None, embedding_dim=None,**kwargs):
super(PositionalEncoding, self).__init__()
self.sequence_len = sequence_len
self.embedding_dim = embedding_dim
def call(self, x):
position_embedding = np.array([
[pos / np.power(10000, 2. * i / self.embedding_dim) for i in range(self.embedding_dim)]
for pos in range(self.sequence_len)])
position_embedding[:, 0::2] = np.sin(position_embedding[:, 0::2]) # dim 2i
position_embedding[:, 1::2] = np.cos(position_embedding[:, 1::2]) # dim 2i+1
position_embedding = tf.cast(position_embedding, dtype=tf.float32)
return position_embedding+x
def get_config(self):
config = super().get_config().copy()
config.update({
'sequence_len' : self.sequence_len,
'embedding_dim' : self.embedding_dim,
})
return config
def MultiHeadAttention_model(input_shape):
input = Input(shape=input_shape)
conv1 = Conv1D(256, 3, activation="relu")(input)
pool1 = AveragePooling1D(2)(conv1)
drop1 = Dropout(0.4)(pool1)
conv2 = Conv1D(256, 3, activation="relu")(drop1)
pool2 = AveragePooling1D(2)(conv2)
drop2 = Dropout(0.4)(pool2)
lstm = Bidirectional(LSTM(128,
dropout=0.5,
activation='tanh',
return_sequences=True,
kernel_regularizer=regularizers.l2(0.01)))(drop2)
pos_embedding = PositionalEncoding(sequence_len=int(((23-3+1)/2-3+1)/2), embedding_dim=2*128)(lstm)
atten = MultiHeadAttention(num_heads=2,
key_dim=64,
dropout=0.2,
kernel_regularizer=regularizers.l2(0.01))(pos_embedding, pos_embedding)
flat = Flatten()(atten)
dense1 = Dense(512,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(flat)
drop3 = Dropout(0.1)(dense1)
dense2 = Dense(128,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(drop3)
drop4 = Dropout(0.1)(dense2)
dense3 = Dense(256,
kernel_regularizer=regularizers.l2(1e-4),
bias_regularizer=regularizers.l2(1e-4),
activation="relu")(drop4)
drop5 = Dropout(0.1)(dense3)
output = Dense(1, activation="linear")(drop5)
model = Model(inputs=[input], outputs=[output])
return model
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def apply_mutation(ref_sequence, offset, ref, alt):
"""
Apply a single mutation to the sequence.
"""
if len(ref) == len(alt) and alt != "*": # SNP
mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+len(alt):]
elif len(ref) < len(alt): # Insertion
mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+1:]
elif len(ref) == len(alt) and alt == "*": # Deletion
mutated_seq = ref_sequence[:offset] + ref_sequence[offset+1:]
elif len(ref) > len(alt) and alt != "*": # Deletion
mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+len(ref):]
elif len(ref) > len(alt) and alt == "*": # Deletion
mutated_seq = ref_sequence[:offset] + ref_sequence[offset+len(ref):]
return mutated_seq
def construct_combinations(sequence, mutations):
"""
Construct all combinations of mutations.
mutations is a list of tuples (position, ref, [alts])
"""
if not mutations:
return [sequence]
# Take the first mutation and recursively construct combinations for the rest
first_mutation = mutations[0]
rest_mutations = mutations[1:]
offset, ref, alts = first_mutation
sequences = []
for alt in alts:
mutated_sequence = apply_mutation(sequence, offset, ref, alt)
sequences.extend(construct_combinations(mutated_sequence, rest_mutations))
return sequences
def needleman_wunsch_alignment(query_seq, ref_seq):
"""
Use Needleman-Wunsch alignment to find the maximum alignment position in ref_seq
Use this position to represent the position of target sequence with mutations
"""
# Needleman-Wunsch alignment
alignment = parasail.nw_trace(query_seq, ref_seq, 10, 1, parasail.blosum62)
# extract CIGAR object
cigar = alignment.cigar
cigar_string = cigar.decode.decode("utf-8")
# record ref_pos
ref_pos = 0
matches = re.findall(r'(\d+)([MIDNSHP=X])', cigar_string)
max_num_before_equal = 0
max_equal_index = -1
total_before_max_equal = 0
for i, (num_str, op) in enumerate(matches):
num = int(num_str)
if op == '=':
if num > max_num_before_equal:
max_num_before_equal = num
max_equal_index = i
total_before_max_equal = sum(int(matches[j][0]) for j in range(max_equal_index))
ref_pos = total_before_max_equal
return ref_pos
def find_gRNA_with_mutation(ref_sequence, exon_chr, start, end, strand, transcript_id,
exon_id, gene_symbol, vcf_reader, pam="NGG", target_length=20):
# initialization
mutated_sequences = [ref_sequence]
# find mutations within interested region
mutations = vcf_reader(f"{exon_chr}:{start}-{end}")
if mutations:
# find mutations
mutation_list = []
for mutation in mutations:
offset = mutation.POS - start
ref = mutation.REF
alts = mutation.ALT[:-1]
mutation_list.append((offset, ref, alts))
# replace reference sequence of mutation
mutated_sequences = construct_combinations(ref_sequence, mutation_list)
# find gRNA in ref_sequence or all mutated_sequences
targets = []
for seq in mutated_sequences:
len_sequence = len(seq)
dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'}
for i in range(len_sequence - len(pam) + 1):
if seq[i + 1:i + 3] == pam[1:]:
if i >= target_length:
target_seq = seq[i - target_length:i + 3]
pos = ref_sequence.find(target_seq)
if pos != -1:
is_mut = False
if strand == -1:
tar_start = end - pos - target_length - 2
else:
tar_start = start + pos
else:
is_mut = True
nw_pos = needleman_wunsch_alignment(target_seq, ref_sequence)
if strand == -1:
tar_start = str(end - nw_pos - target_length - 2) + '*'
else:
tar_start = str(start + nw_pos) + '*'
gRNA = ''.join([dnatorna[base] for base in seq[i - target_length:i]])
targets.append([target_seq, gRNA, exon_chr, str(strand), str(tar_start), transcript_id, exon_id, gene_symbol, is_mut])
# filter duplicated targets
unique_targets_set = set(tuple(element) for element in targets)
unique_targets = [list(element) for element in unique_targets_set]
return unique_targets
def format_prediction_output_with_mutation(targets, model_path):
model = MultiHeadAttention_model(input_shape=(23, 4))
model.load_weights(model_path)
formatted_data = []
for target in targets:
# Encode the gRNA sequence
encoded_seq = get_seqcode(target[0])
# Predict on-target efficiency using the model
prediction = float(list(model.predict(encoded_seq, verbose=0)[0])[0])
if prediction > 100:
prediction = 100
# Format output
gRNA = target[1]
exon_chr = target[2]
strand = target[3]
tar_start = target[4]
transcript_id = target[5]
exon_id = target[6]
gene_symbol = target[7]
is_mut = target[8]
formatted_data.append([gene_symbol, exon_chr, strand, tar_start, transcript_id,
exon_id, target[0], gRNA, prediction, is_mut])
return formatted_data
def process_gene(gene_symbol, vcf_reader, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
results = []
all_exons = [] # To accumulate all exons
all_gene_sequences = [] # To accumulate all gene sequences
if transcripts:
for transcript in transcripts:
Exons = transcript['Exon']
all_exons.extend(Exons) # Add all exons from this transcript to the list
transcript_id = transcript['id']
for Exon in Exons:
exon_id = Exon['id']
gene_sequence = fetch_ensembl_sequence(exon_id) # Reference exon sequence
if gene_sequence:
all_gene_sequences.append(gene_sequence) # Add this gene sequence to the list
exon_chr = Exon['seq_region_name']
start = Exon['start']
end = Exon['end']
strand = Exon['strand']
targets = find_gRNA_with_mutation(gene_sequence, exon_chr, start, end, strand,
transcript_id, exon_id, gene_symbol, vcf_reader)
if targets:
# Predict on-target efficiency for each gRNA site including mutations
formatted_data = format_prediction_output_with_mutation(targets, model_path)
results.extend(formatted_data)
else:
print(f"Failed to retrieve gene sequence for exon {exon_id}.")
else:
print("Failed to retrieve transcripts.")
# Sort results based on prediction score (assuming score is at the 8th index)
sorted_results = sorted(results, key=lambda x: x[8], reverse=True)
# Return the sorted output, combined gene sequences, and all exons
return sorted_results, all_gene_sequences, all_exons
def create_genbank_features(data):
features = []
# If the input data is a DataFrame, convert it to a list of lists
if isinstance(data, pd.DataFrame):
formatted_data = data.values.tolist()
elif isinstance(data, list):
formatted_data = data
else:
raise TypeError("Data should be either a list or a pandas DataFrame.")
for row in formatted_data:
try:
start = int(row[1])
end = int(row[2])
except ValueError as e:
print(f"Error converting start/end to int: {row[1]}, {row[2]} - {e}")
continue
strand = 1 if row[3] == '+' else -1
location = FeatureLocation(start=start, end=end, strand=strand)
feature = SeqFeature(location=location, type="misc_feature", qualifiers={
'label': row[7], # Use gRNA as the label
'note': f"Prediction: {row[8]}" # Include the prediction score
})
features.append(feature)
return features
def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
# Ensure gene_sequence is a string before creating Seq object
if not isinstance(gene_sequence, str):
gene_sequence = str(gene_sequence)
features = create_genbank_features(df)
# Now gene_sequence is guaranteed to be a string, suitable for Seq
seq_obj = Seq(gene_sequence)
record = SeqRecord(seq_obj, id=gene_symbol, name=gene_symbol,
description=f'CRISPR Cas9 predicted targets for {gene_symbol}', features=features)
record.annotations["molecule_type"] = "DNA"
SeqIO.write(record, output_path, "genbank")
def create_bed_file_from_df(df, output_path):
with open(output_path, 'w') as bed_file:
for index, row in df.iterrows():
chrom = row["Chr"]
start = int(row["Start Pos"])
end = int(row["End Pos"])
strand = '+' if row["Strand"] == '1' else '-'
gRNA = row["gRNA"]
score = str(row["Prediction"])
# transcript_id is not typically part of the standard BED columns but added here for completeness
transcript_id = row["Transcript"]
# Writing only standard BED columns; additional columns can be appended as needed
bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\n")
def create_csv_from_df(df, output_path):
df.to_csv(output_path, index=False)
|