Spaces:
Sleeping
Sleeping
import os | |
import tiger | |
import cas9on | |
import cas9off | |
import pandas as pd | |
import streamlit as st | |
from pathlib import Path | |
# title and documentation | |
st.markdown(Path('crisprTool.md').read_text(), unsafe_allow_html=True) | |
st.divider() | |
CRISPR_MODELS = ['Cas9', 'Cas12', 'Cas13d'] | |
selected_model = st.selectbox('Select CRISPR model:', CRISPR_MODELS, key='selected_model') | |
cas9on_path = 'cas9_model/on-cla.h5' | |
def convert_df(df): | |
# IMPORTANT: Cache the conversion to prevent computation on every rerun | |
return df.to_csv().encode('utf-8') | |
def mode_change_callback(): | |
if st.session_state.mode in {tiger.RUN_MODES['all'], tiger.RUN_MODES['titration']}: # TODO: support titration | |
st.session_state.check_off_targets = False | |
st.session_state.disable_off_target_checkbox = True | |
else: | |
st.session_state.disable_off_target_checkbox = False | |
def progress_update(update_text, percent_complete): | |
with progress.container(): | |
st.write(update_text) | |
st.progress(percent_complete / 100) | |
def initiate_run(): | |
# initialize state variables | |
st.session_state.transcripts = None | |
st.session_state.input_error = None | |
st.session_state.on_target = None | |
st.session_state.titration = None | |
st.session_state.off_target = None | |
# initialize transcript DataFrame | |
transcripts = pd.DataFrame(columns=[tiger.ID_COL, tiger.SEQ_COL]) | |
# manual entry | |
if st.session_state.entry_method == ENTRY_METHODS['manual']: | |
transcripts = pd.DataFrame({ | |
tiger.ID_COL: ['ManualEntry'], | |
tiger.SEQ_COL: [st.session_state.manual_entry] | |
}).set_index(tiger.ID_COL) | |
# fasta file upload | |
elif st.session_state.entry_method == ENTRY_METHODS['fasta']: | |
if st.session_state.fasta_entry is not None: | |
fasta_path = st.session_state.fasta_entry.name | |
with open(fasta_path, 'w') as f: | |
f.write(st.session_state.fasta_entry.getvalue().decode('utf-8')) | |
transcripts = tiger.load_transcripts([fasta_path], enforce_unique_ids=False) | |
os.remove(fasta_path) | |
# convert to upper case as used by tokenizer | |
transcripts[tiger.SEQ_COL] = transcripts[tiger.SEQ_COL].apply(lambda s: s.upper().replace('U', 'T')) | |
# ensure all transcripts have unique identifiers | |
if transcripts.index.has_duplicates: | |
st.session_state.input_error = "Duplicate transcript ID's detected in fasta file" | |
# ensure all transcripts only contain nucleotides A, C, G, T, and wildcard N | |
elif not all(transcripts[tiger.SEQ_COL].apply(lambda s: set(s).issubset(tiger.NUCLEOTIDE_TOKENS.keys()))): | |
st.session_state.input_error = 'Transcript(s) must only contain upper or lower case A, C, G, and Ts or Us' | |
# ensure all transcripts satisfy length requirements | |
elif any(transcripts[tiger.SEQ_COL].apply(lambda s: len(s) < tiger.TARGET_LEN)): | |
st.session_state.input_error = 'Transcript(s) must be at least {:d} bases.'.format(tiger.TARGET_LEN) | |
# run model if we have any transcripts | |
elif len(transcripts) > 0: | |
st.session_state.transcripts = transcripts | |
# Check if the selected model is Cas9 | |
if selected_model == 'Cas9': | |
# Use a radio button to select enzymes, making sure only one can be selected at a time | |
target_selection = st.radio( | |
"Select either on-target or off-target:", | |
('on-target', 'off-target'), | |
key='target_selection' | |
) | |
if target_selection == 'on-target': | |
# Gene symbol entry | |
gene_symbol = st.text_input('Enter a Gene Symbol:', key='gene_symbol') | |
# Prediction button | |
predict_button = st.button('Predict on-target') | |
# Process predictions | |
if predict_button and gene_symbol: | |
predictions = cas9on.process_gene(gene_symbol, cas9on_path) | |
# Store only first 10 for display and save full predictions for download | |
st.session_state['on_target_results'] = predictions[:10] | |
st.session_state['full_on_target_results'] = predictions | |
# On-target results display | |
if 'on_target_results' in st.session_state and st.session_state['on_target_results']: | |
# Convert the results to a pandas DataFrame for better display | |
df = pd.DataFrame(st.session_state['on_target_results'], | |
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"]) | |
st.write('On-target predictions:') | |
st.dataframe(df) | |
if 'full_on_target_results' in st.session_state: | |
# Convert full results to a CSV for download | |
full_df = pd.DataFrame(st.session_state['full_on_target_results'], | |
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"]) | |
full_predictions_csv = full_df.to_csv(index=False).encode('utf-8') | |
st.download_button( | |
label='Download on-target predictions', | |
data=full_predictions_csv, | |
file_name='on_target_results.csv', | |
mime='text/csv' | |
) | |
elif target_selection == 'off-target': | |
ENTRY_METHODS = dict( | |
manual='Manual entry of target sequence', | |
txt="txt file upload" | |
) | |
if __name__ == '__main__': | |
# app initialization for Cas9 off-target | |
if 'target_sequence' not in st.session_state: | |
st.session_state.target_sequence = None | |
if 'input_error' not in st.session_state: | |
st.session_state.input_error = None | |
if 'off_target_results' not in st.session_state: | |
st.session_state.off_target_results = None | |
# target sequence entry | |
st.selectbox( | |
label='How would you like to provide target sequences?', | |
options=ENTRY_METHODS.values(), | |
key='entry_method', | |
disabled=st.session_state.target_sequence is not None | |
) | |
if st.session_state.entry_method == ENTRY_METHODS['manual']: | |
st.text_input( | |
label='Enter on/off sequences:', | |
key='manual_entry', | |
placeholder='Enter on/off sequences like:GGGTGGGGGGAGTTTGCTCCAGG,AGGTGGGGTGA_TTTGCTCCAGG', | |
disabled=st.session_state.target_sequence is not None | |
) | |
elif st.session_state.entry_method == ENTRY_METHODS['txt']: | |
st.file_uploader( | |
label='Upload a txt file:', | |
key='txt_entry', | |
disabled=st.session_state.target_sequence is not None | |
) | |
# prediction button | |
if st.button('Predict off-target'): | |
if st.session_state.entry_method == ENTRY_METHODS['manual']: | |
user_input = st.session_state.manual_entry | |
if user_input: # Check if user_input is not empty | |
predictions = cas9off.process_input_and_predict(user_input, input_type='manual') | |
elif st.session_state.entry_method == ENTRY_METHODS['txt']: | |
uploaded_file = st.session_state.txt_entry | |
if uploaded_file is not None: | |
# Read the uploaded file content | |
file_content = uploaded_file.getvalue().decode("utf-8") | |
predictions = cas9off.process_input_and_predict(file_content, input_type='manual') | |
st.session_state.off_target_results = predictions | |
else: | |
predictions = None | |
progress = st.empty() | |
# input error display | |
error = st.empty() | |
if st.session_state.input_error is not None: | |
error.error(st.session_state.input_error, icon="π¨") | |
else: | |
error.empty() | |
# off-target results display | |
off_target_results = st.empty() | |
if st.session_state.off_target_results is not None: | |
with off_target_results.container(): | |
if len(st.session_state.off_target_results) > 0: | |
st.write('Off-target predictions:', st.session_state.off_target_results) | |
st.download_button( | |
label='Download off-target predictions', | |
data=convert_df(st.session_state.off_target_results), | |
file_name='off_target_results.csv', | |
mime='text/csv' | |
) | |
else: | |
st.write('No significant off-target effects detected!') | |
else: | |
off_target_results.empty() | |
# running the CRISPR-Net model for off-target predictions | |
if st.session_state.target_sequence is not None: | |
st.session_state.off_target_results = cas9off.predict_off_targets( | |
target_sequence=st.session_state.target_sequence, | |
status_update_fn=progress_update | |
) | |
st.session_state.target_sequence = None | |
st.experimental_rerun() | |
elif selected_model == 'Cas12': | |
# Placeholder for Cas12 model loading | |
# TODO: Implement Cas12 model loading logic | |
raise NotImplementedError("Cas12 model loading not implemented yet.") | |
elif selected_model == 'Cas13d': | |
ENTRY_METHODS = dict( | |
manual='Manual entry of single transcript', | |
fasta="Fasta file upload (supports multiple transcripts if they have unique ID's)" | |
) | |
if __name__ == '__main__': | |
# app initialization | |
if 'mode' not in st.session_state: | |
st.session_state.mode = tiger.RUN_MODES['all'] | |
st.session_state.disable_off_target_checkbox = True | |
if 'entry_method' not in st.session_state: | |
st.session_state.entry_method = ENTRY_METHODS['manual'] | |
if 'transcripts' not in st.session_state: | |
st.session_state.transcripts = None | |
if 'input_error' not in st.session_state: | |
st.session_state.input_error = None | |
if 'on_target' not in st.session_state: | |
st.session_state.on_target = None | |
if 'titration' not in st.session_state: | |
st.session_state.titration = None | |
if 'off_target' not in st.session_state: | |
st.session_state.off_target = None | |
# mode selection | |
col1, col2 = st.columns([0.65, 0.35]) | |
with col1: | |
st.radio( | |
label='What do you want to predict?', | |
options=tuple(tiger.RUN_MODES.values()), | |
key='mode', | |
on_change=mode_change_callback, | |
disabled=st.session_state.transcripts is not None, | |
) | |
with col2: | |
st.checkbox( | |
label='Find off-target effects (slow)', | |
key='check_off_targets', | |
disabled=st.session_state.disable_off_target_checkbox or st.session_state.transcripts is not None | |
) | |
# transcript entry | |
st.selectbox( | |
label='How would you like to provide transcript(s) of interest?', | |
options=ENTRY_METHODS.values(), | |
key='entry_method', | |
disabled=st.session_state.transcripts is not None | |
) | |
if st.session_state.entry_method == ENTRY_METHODS['manual']: | |
st.text_input( | |
label='Enter a target transcript:', | |
key='manual_entry', | |
placeholder='Upper or lower case', | |
disabled=st.session_state.transcripts is not None | |
) | |
elif st.session_state.entry_method == ENTRY_METHODS['fasta']: | |
st.file_uploader( | |
label='Upload a fasta file:', | |
key='fasta_entry', | |
disabled=st.session_state.transcripts is not None | |
) | |
# let's go! | |
st.button(label='Get predictions!', on_click=initiate_run, disabled=st.session_state.transcripts is not None) | |
progress = st.empty() | |
# input error | |
error = st.empty() | |
if st.session_state.input_error is not None: | |
error.error(st.session_state.input_error, icon="π¨") | |
else: | |
error.empty() | |
# on-target results | |
on_target_results = st.empty() | |
if st.session_state.on_target is not None: | |
with on_target_results.container(): | |
st.write('On-target predictions:', st.session_state.on_target) | |
st.download_button( | |
label='Download on-target predictions', | |
data=convert_df(st.session_state.on_target), | |
file_name='on_target.csv', | |
mime='text/csv' | |
) | |
else: | |
on_target_results.empty() | |
# titration results | |
titration_results = st.empty() | |
if st.session_state.titration is not None: | |
with titration_results.container(): | |
st.write('Titration predictions:', st.session_state.titration) | |
st.download_button( | |
label='Download titration predictions', | |
data=convert_df(st.session_state.titration), | |
file_name='titration.csv', | |
mime='text/csv' | |
) | |
else: | |
titration_results.empty() | |
# off-target results | |
off_target_results = st.empty() | |
if st.session_state.off_target is not None: | |
with off_target_results.container(): | |
if len(st.session_state.off_target) > 0: | |
st.write('Off-target predictions:', st.session_state.off_target) | |
st.download_button( | |
label='Download off-target predictions', | |
data=convert_df(st.session_state.off_target), | |
file_name='off_target.csv', | |
mime='text/csv' | |
) | |
else: | |
st.write('We did not find any off-target effects!') | |
else: | |
off_target_results.empty() | |
# keep trying to run model until we clear inputs (streamlit UI changes can induce race-condition reruns) | |
if st.session_state.transcripts is not None: | |
st.session_state.on_target, st.session_state.titration, st.session_state.off_target = tiger.tiger_exhibit( | |
transcripts=st.session_state.transcripts, | |
mode={v: k for k, v in tiger.RUN_MODES.items()}[st.session_state.mode], | |
check_off_targets=st.session_state.check_off_targets, | |
status_update_fn=progress_update | |
) | |
st.session_state.transcripts = None | |
st.experimental_rerun() | |