CRISPRTool / cas9on.py
supercat666's picture
fix
a6e4e6b
raw
history blame
9.04 kB
import requests
import tensorflow as tf
import pandas as pd
import numpy as np
from operator import add
from functools import reduce
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
from keras.models import load_model
import random
import pyBigWig
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
ntmap = {'A': (1, 0, 0, 0),
'C': (0, 1, 0, 0),
'G': (0, 0, 1, 0),
'T': (0, 0, 0, 1)
}
def get_seqcode(seq):
return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape(
(1, len(seq), -1))
from keras.models import load_model
class DCModelOntar:
def __init__(self, ontar_model_dir, is_reg=False):
self.model = load_model(ontar_model_dir)
def ontar_predict(self, x, channel_first=True):
if channel_first:
x = x.transpose([0, 2, 3, 1])
yp = self.model.predict(x)
return yp.ravel()
def fetch_ensembl_transcripts(gene_symbol):
url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
gene_data = response.json()
if 'Transcript' in gene_data:
return gene_data['Transcript']
else:
print("No transcripts found for gene:", gene_symbol)
return None
else:
print(f"Error fetching gene data from Ensembl: {response.text}")
return None
def fetch_ensembl_sequence(transcript_id):
url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json"
response = requests.get(url)
if response.status_code == 200:
sequence_data = response.json()
if 'seq' in sequence_data:
return sequence_data['seq']
else:
print("No sequence found for transcript:", transcript_id)
return None
else:
print(f"Error fetching sequence data from Ensembl: {response.text}")
return None
def find_crispr_targets(sequence, chr, start, strand, transcript_id, exon_id, pam="NGG", target_length=20):
targets = []
len_sequence = len(sequence)
complement = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}
dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'}
if strand == -1:
sequence = ''.join([complement[base] for base in sequence])
for i in range(len_sequence - len(pam) + 1):
if sequence[i + 1:i + 3] == pam[1:]:
if i >= target_length:
target_seq = sequence[i - target_length:i + 3]
tar_start = start + i - target_length
tar_end = start + i + 3
gRNA = ''.join([dnatorna[base] for base in sequence[i - target_length:i]])
targets.append([target_seq, gRNA, chr, str(tar_start), str(tar_end), str(strand), transcript_id, exon_id])
return targets
# Function to predict on-target efficiency and format output
def format_prediction_output(targets, model_path):
dcModel = DCModelOntar(model_path)
formatted_data = []
for target in targets:
# Encode the gRNA sequence
encoded_seq = get_seqcode(target[0]).reshape(-1,4,1,23)
# Predict on-target efficiency using the model
prediction = dcModel.ontar_predict(encoded_seq)
# Format output
gRNA = target[1]
chr = target[2]
start = target[3]
end = target[4]
strand = target[5]
transcript_id = target[6]
exon_id = target[7]
formatted_data.append([chr, start, end, strand, transcript_id, exon_id, target[0], gRNA, prediction[0]])
return formatted_data
def process_gene(gene_symbol, model_path):
transcripts = fetch_ensembl_transcripts(gene_symbol)
results = []
all_exons = [] # To accumulate all exons
all_gene_sequences = [] # To accumulate all gene sequences
if transcripts:
for transcript in transcripts:
Exons = transcript['Exon']
all_exons.extend(Exons) # Add all exons from this transcript to the list
transcript_id = transcript['id']
for exon in Exons:
exon_id = exon['id']
gene_sequence = fetch_ensembl_sequence(exon_id)
if gene_sequence:
all_gene_sequences.append(gene_sequence) # Add this gene sequence to the list
start = exon['start']
strand = exon['strand']
chr = exon['seq_region_name']
targets = find_crispr_targets(gene_sequence, chr, start, strand, transcript_id, exon_id)
if targets:
# Predict on-target efficiency for each gRNA site
formatted_data = format_prediction_output(targets, model_path)
results.extend(formatted_data)
else:
print(f"Failed to retrieve gene sequence for exon {exon_id}.")
else:
print("Failed to retrieve transcripts.")
# Return the sorted output, combined gene sequences, and all exons
return results, all_gene_sequences, all_exons
# def create_genbank_features(data):
# features = []
#
# # If the input data is a DataFrame, convert it to a list of lists
# if isinstance(data, pd.DataFrame):
# formatted_data = data.values.tolist()
# elif isinstance(data, list):
# formatted_data = data
# else:
# raise TypeError("Data should be either a list or a pandas DataFrame.")
#
# for row in formatted_data:
# try:
# start = int(row[1])
# end = int(row[2])
# except ValueError as e:
# print(f"Error converting start/end to int: {row[1]}, {row[2]} - {e}")
# continue
#
# strand = 1 if row[3] == '+' else -1
# location = FeatureLocation(start=start, end=end, strand=strand)
# feature = SeqFeature(location=location, type="misc_feature", qualifiers={
# 'label': row[7], # Use gRNA as the label
# 'note': f"Prediction: {row[8]}" # Include the prediction score
# })
# features.append(feature)
#
# return features
#
#
# def generate_genbank_file_from_df(df, gene_sequence, gene_symbol, output_path):
# features = create_genbank_features(df)
# record = SeqRecord(Seq(gene_sequence), id=gene_symbol, name=gene_symbol,
# description=f'CRISPR Cas9 predicted targets for {gene_symbol}', features=features)
# record.annotations["molecule_type"] = "DNA"
# SeqIO.write(record, output_path, "genbank")
#
#
# def create_bed_file_from_df(df, output_path):
# with open(output_path, 'w') as bed_file:
# for index, row in df.iterrows():
# chrom = row["Chr"]
# start = int(row["Start Pos"]) # Assuming 'Start Pos' is the column name in the df
# end = int(row["End Pos"]) # Assuming 'End Pos' is the column name in the df
# strand = '+' if row["Strand"] == '1' else '-' # Assuming 'Strand' is the column name in the df
# gRNA = row["gRNA"]
# score = str(row["Prediction"])
# transcript_id = row["Transcript"] # Assuming 'Transcript' is the column name in the df
#
# bed_file.write(f"{chrom}\t{start}\t{end}\t{gRNA}\t{score}\t{strand}\t{transcript_id}\n")
#
#
# def create_csv_from_df(df, output_path):
# df.to_csv(output_path, index=False)
import pyBigWig
def create_bigwig(df, bigwig_path):
# Check for required columns in the DataFrame
required_columns = ["Chr", "Start Pos", "End Pos", "Prediction"]
if not all(column in df.columns for column in required_columns):
raise ValueError(f"DataFrame must contain {required_columns} columns.")
# Convert columns to the correct types
df['Start Pos'] = df['Start Pos'].astype(int)
df['End Pos'] = df['End Pos'].astype(int)
df['Prediction'] = df['Prediction'].astype(float)
# Sort the DataFrame by chromosome and start position to ensure order
df = df.sort_values(by=['Chr', 'Start Pos'])
# Calculate chromosome sizes for the BigWig header
chr_sizes = df.groupby('Chr')['End Pos'].max().to_dict()
header = [(chr, size) for chr, size in chr_sizes.items()]
# Create the BigWig file and add the header
bw = pyBigWig.open(bigwig_path, "w")
bw.addHeader(header)
# Add entries for each chromosome
for chr, group in df.groupby('Chr'):
starts = group['Start Pos'].tolist()
ends = group['End Pos'].tolist()
values = group['Prediction'].tolist()
bw.addEntries(chr, starts, ends=ends, values=values)
# Close the BigWig file
bw.close()