CRISPRTool / tiger.py
NiniCat's picture
Add tiger file
e6bbcf7
raw
history blame
17.2 kB
import argparse
import os
import gzip
import pickle
import numpy as np
import pandas as pd
import tensorflow as tf
from Bio import SeqIO
# column names
ID_COL = 'Transcript ID'
SEQ_COL = 'Transcript Sequence'
TARGET_COL = 'Target Sequence'
GUIDE_COL = 'Guide Sequence'
MM_COL = 'Number of Mismatches'
SCORE_COL = 'Guide Score'
# nucleotide tokens
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T', 'N'], [0, 1, 2, 3, 255]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
# model hyper-parameters
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
UNIT_INTERVAL_MAP = 'sigmoid'
# reference transcript files
REFERENCE_TRANSCRIPTS = ('gencode.v19.pc_transcripts.fa.gz', 'gencode.v19.lncRNA_transcripts.fa.gz')
# application configuration
BATCH_SIZE_COMPUTE = 500
BATCH_SIZE_SCAN = 20
BATCH_SIZE_TRANSCRIPTS = 50
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
RUN_MODES = dict(
all='All on-target guides per transcript',
top_guides='Top {:d} guides per transcript'.format(NUM_TOP_GUIDES),
titration='Top {:d} guides per transcript & their titration candidates'.format(NUM_TOP_GUIDES)
)
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
def load_transcripts(fasta_files: list, enforce_unique_ids: bool = True):
# load all transcripts from fasta files into a DataFrame
transcripts = pd.DataFrame()
for file in fasta_files:
try:
if os.path.splitext(file)[1] == '.gz':
with gzip.open(file, 'rt') as f:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=[ID_COL, SEQ_COL])
else:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(file, 'fasta')], columns=[ID_COL, SEQ_COL])
except Exception as e:
print(e, 'while loading', file)
continue
transcripts = pd.concat([transcripts, df])
# set index
transcripts[ID_COL] = transcripts[ID_COL].apply(lambda s: s.split('|')[0])
transcripts.set_index(ID_COL, inplace=True)
if enforce_unique_ids:
assert not transcripts.index.has_duplicates, "duplicate transcript ID's detected in fasta file"
return transcripts
def sequence_complement(sequence: list):
return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]
def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):
# stack list of sequences into a tensor
sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)
# tokenize sequence
nucleotide_table = tf.lookup.StaticVocabularyTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
num_oov_buckets=1)
sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
row_splits=sequence.row_splits).to_tensor(255)
# add context padding if requested
if add_context_padding:
pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)
# one-hot encode
sequence = tf.one_hot(sequence, depth=4, dtype=tf.float16)
return sequence
def process_data(transcript_seq: str):
# convert to upper case
transcript_seq = transcript_seq.upper()
# get all target sites
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN + 1)]
# prepare guide sequences
guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])
# model inputs
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
], axis=-1)
return target_seq, guide_seq, model_inputs
def calibrate_predictions(predictions: np.array, num_mismatches: np.array, params: pd.DataFrame = None):
if params is None:
params = pd.read_pickle('calibration_params.pkl')
correction = np.squeeze(params.set_index('num_mismatches').loc[num_mismatches, 'slope'].to_numpy())
return correction * predictions
def score_predictions(predictions: np.array, params: pd.DataFrame = None):
if params is None:
params = pd.read_pickle('scoring_params.pkl')
if UNIT_INTERVAL_MAP == 'sigmoid':
params = params.iloc[0]
return 1 - 1 / (1 + np.exp(params['a'] * predictions + params['b']))
elif UNIT_INTERVAL_MAP == 'min-max':
return 1 - (predictions - params['a']) / (params['b'] - params['a'])
elif UNIT_INTERVAL_MAP == 'exp-lin-exp':
# regime indices
active_saturation = predictions < params['a']
linear_regime = (params['a'] <= predictions) & (predictions <= params['c'])
inactive_saturation = params['c'] < predictions
# linear regime
slope = (params['d'] - params['b']) / (params['c'] - params['a'])
intercept = -params['a'] * slope + params['b']
predictions[linear_regime] = slope * predictions[linear_regime] + intercept
# active saturation regime
alpha = slope / params['b']
beta = alpha * params['a'] - np.log(params['b'])
predictions[active_saturation] = np.exp(alpha * predictions[active_saturation] - beta)
# inactive saturation regime
alpha = slope / (1 - params['d'])
beta = -alpha * params['c'] - np.log(1 - params['d'])
predictions[inactive_saturation] = 1 - np.exp(-alpha * predictions[inactive_saturation] - beta)
return 1 - predictions
else:
raise NotImplementedError
def get_on_target_predictions(transcripts: pd.DataFrame, model: tf.keras.Model, status_update_fn=None):
# loop over transcripts
predictions = pd.DataFrame()
for i, (index, row) in enumerate(transcripts.iterrows()):
# parse transcript sequence
target_seq, guide_seq, model_inputs = process_data(row[SEQ_COL])
# get predictions
lfc_estimate = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)[:, 0]
lfc_estimate = calibrate_predictions(lfc_estimate, num_mismatches=np.zeros_like(lfc_estimate))
scores = score_predictions(lfc_estimate)
predictions = pd.concat([predictions, pd.DataFrame({
ID_COL: [index] * len(scores),
TARGET_COL: target_seq,
GUIDE_COL: guide_seq,
SCORE_COL: scores})])
# progress update
percent_complete = 100 * min((i + 1) / len(transcripts), 1)
update_text = 'Evaluating on-target guides for each transcript: {:.2f}%'.format(percent_complete)
print('\r' + update_text, end='')
if status_update_fn is not None:
status_update_fn(update_text, percent_complete)
print('')
return predictions
def top_guides_per_transcript(predictions: pd.DataFrame):
# select and sort top guides for each transcript
top_guides = pd.DataFrame()
for transcript in predictions[ID_COL].unique():
df = predictions.loc[predictions[ID_COL] == transcript]
df = df.sort_values(SCORE_COL, ascending=False).reset_index(drop=True).iloc[:NUM_TOP_GUIDES]
top_guides = pd.concat([top_guides, df])
return top_guides.reset_index(drop=True)
def get_titration_candidates(top_guide_predictions: pd.DataFrame):
# generate a table of all titration candidates
titration_candidates = pd.DataFrame()
for _, row in top_guide_predictions.iterrows():
for i in range(len(row[GUIDE_COL])):
nt = row[GUIDE_COL][i]
for mutation in set(NUCLEOTIDE_TOKENS.keys()) - {nt, 'N'}:
sm_guide = list(row[GUIDE_COL])
sm_guide[i] = mutation
sm_guide = ''.join(sm_guide)
assert row[GUIDE_COL] != sm_guide
titration_candidates = pd.concat([titration_candidates, pd.DataFrame({
ID_COL: [row[ID_COL]],
TARGET_COL: [row[TARGET_COL]],
GUIDE_COL: [sm_guide],
MM_COL: [1]
})])
return titration_candidates
def find_off_targets(top_guides: pd.DataFrame, status_update_fn=None):
# load reference transcripts
reference_transcripts = load_transcripts([os.path.join('transcripts', f) for f in REFERENCE_TRANSCRIPTS])
# one-hot encode guides to form a filter
guide_filter = one_hot_encode_sequence(sequence_complement(top_guides[GUIDE_COL]), add_context_padding=False)
guide_filter = tf.transpose(guide_filter, [1, 2, 0])
# loop over transcripts in batches
i = 0
off_targets = pd.DataFrame()
while i < len(reference_transcripts):
# select batch
df_batch = reference_transcripts.iloc[i:min(i + BATCH_SIZE_SCAN, len(reference_transcripts))]
i += BATCH_SIZE_SCAN
# find locations of off-targets
transcripts = one_hot_encode_sequence(df_batch[SEQ_COL].values.tolist(), add_context_padding=False)
num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
loc_off_targets = tf.where(tf.round(num_mismatches) <= NUM_MISMATCHES).numpy()
# off-targets discovered
if len(loc_off_targets) > 0:
# log off-targets
dict_off_targets = pd.DataFrame({
'On-target ' + ID_COL: top_guides.iloc[loc_off_targets[:, 2]][ID_COL],
GUIDE_COL: top_guides.iloc[loc_off_targets[:, 2]][GUIDE_COL],
'Off-target ' + ID_COL: df_batch.index.values[loc_off_targets[:, 0]],
'Guide Midpoint': loc_off_targets[:, 1],
SEQ_COL: df_batch[SEQ_COL].values[loc_off_targets[:, 0]],
MM_COL: tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
}).to_dict('records')
# trim transcripts to targets
for row in dict_off_targets:
start_location = row['Guide Midpoint'] - (GUIDE_LEN // 2)
del row['Guide Midpoint']
target = row[SEQ_COL]
del row[SEQ_COL]
if start_location < CONTEXT_5P:
target = target[0:GUIDE_LEN + CONTEXT_3P]
target = 'N' * (TARGET_LEN - len(target)) + target
elif start_location + GUIDE_LEN + CONTEXT_3P > len(target):
target = target[start_location - CONTEXT_5P:]
target = target + 'N' * (TARGET_LEN - len(target))
else:
target = target[start_location - CONTEXT_5P:start_location + GUIDE_LEN + CONTEXT_3P]
if row[MM_COL] == 0 and 'N' not in target:
assert row[GUIDE_COL] == sequence_complement([target[CONTEXT_5P:TARGET_LEN - CONTEXT_3P]])[0]
row[TARGET_COL] = target
# append new off-targets
off_targets = pd.concat([off_targets, pd.DataFrame(dict_off_targets)])
# progress update
percent_complete = 100 * min((i + 1) / len(reference_transcripts), 1)
update_text = 'Scanning for off-targets: {:.2f}%'.format(percent_complete)
print('\r' + update_text, end='')
if status_update_fn is not None:
status_update_fn(update_text, percent_complete)
print('')
return off_targets
def predict_off_target(off_targets: pd.DataFrame, model: tf.keras.Model):
if len(off_targets) == 0:
return pd.DataFrame()
# compute off-target predictions
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(off_targets[TARGET_COL], add_context_padding=False), [len(off_targets), -1]),
tf.reshape(one_hot_encode_sequence(off_targets[GUIDE_COL], add_context_padding=True), [len(off_targets), -1]),
], axis=-1)
lfc_estimate = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)[:, 0]
lfc_estimate = calibrate_predictions(lfc_estimate, off_targets['Number of Mismatches'].to_numpy())
off_targets[SCORE_COL] = score_predictions(lfc_estimate)
return off_targets.reset_index(drop=True)
def tiger_exhibit(transcripts: pd.DataFrame, mode: str, check_off_targets: bool, status_update_fn=None):
# load model
if os.path.exists('model'):
tiger = tf.keras.models.load_model('model')
else:
print('no saved model!')
exit()
# evaluate all on-target guides per transcript
on_target_predictions = get_on_target_predictions(transcripts, tiger, status_update_fn)
# initialize other outputs
titration_predictions = off_target_predictions = None
if mode == 'all' and not check_off_targets:
off_target_candidates = None
elif mode == 'top_guides':
on_target_predictions = top_guides_per_transcript(on_target_predictions)
off_target_candidates = on_target_predictions
elif mode == 'titration':
on_target_predictions = top_guides_per_transcript(on_target_predictions)
titration_candidates = get_titration_candidates(on_target_predictions)
titration_predictions = predict_off_target(titration_candidates, model=tiger)
off_target_candidates = pd.concat([on_target_predictions, titration_predictions])
else:
raise NotImplementedError
# check off-target effects for top guides
if check_off_targets and off_target_candidates is not None:
off_target_candidates = find_off_targets(off_target_candidates, status_update_fn)
off_target_predictions = predict_off_target(off_target_candidates, model=tiger)
if len(off_target_predictions) > 0:
off_target_predictions = off_target_predictions.sort_values(SCORE_COL, ascending=False)
off_target_predictions = off_target_predictions.reset_index(drop=True)
# finalize tables
for df in [on_target_predictions, titration_predictions, off_target_predictions]:
if df is not None and len(df) > 0:
for col in df.columns:
if ID_COL in col and set(df[col].unique()) == {'ManualEntry'}:
del df[col]
df[GUIDE_COL] = df[GUIDE_COL].apply(lambda s: s[::-1]) # reverse guide sequences
df[TARGET_COL] = df[TARGET_COL].apply(lambda seq: seq[CONTEXT_5P:len(seq) - CONTEXT_3P]) # remove context
return on_target_predictions, titration_predictions, off_target_predictions
if __name__ == '__main__':
# common arguments
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='titration')
parser.add_argument('--check_off_targets', action='store_true', default=False)
parser.add_argument('--fasta_path', type=str, default=None)
args = parser.parse_args()
# check for any existing results
if os.path.exists('on_target.csv') or os.path.exists('titration.csv') or os.path.exists('off_target.csv'):
raise FileExistsError('please rename or delete existing results')
# load transcripts from a directory of fasta files
if args.fasta_path is not None and os.path.exists(args.fasta_path):
df_transcripts = load_transcripts([os.path.join(args.fasta_path, f) for f in os.listdir(args.fasta_path)])
# otherwise consider simple test case with first 50 nucleotides from EIF3B-003's CDS
else:
df_transcripts = pd.DataFrame({
ID_COL: ['ManualEntry'],
SEQ_COL: ['ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC']})
df_transcripts.set_index(ID_COL, inplace=True)
# process in batches
batch = 0
num_batches = len(df_transcripts) // BATCH_SIZE_TRANSCRIPTS
num_batches += (len(df_transcripts) % BATCH_SIZE_TRANSCRIPTS > 0)
for idx in range(0, len(df_transcripts), BATCH_SIZE_TRANSCRIPTS):
batch += 1
print('Batch {:d} of {:d}'.format(batch, num_batches))
# run batch
idx_stop = min(idx + BATCH_SIZE_TRANSCRIPTS, len(df_transcripts))
df_on_target, df_titration, df_off_target = tiger_exhibit(
transcripts=df_transcripts[idx:idx_stop],
mode=args.mode,
check_off_targets=args.check_off_targets
)
# save batch results
df_on_target.to_csv('on_target.csv', header=batch == 1, index=False, mode='a')
if df_titration is not None:
df_titration.to_csv('titration.csv', header=batch == 1, index=False, mode='a')
if df_off_target is not None:
df_off_target.to_csv('off_target.csv', header=batch == 1, index=False, mode='a')
# clear session to prevent memory blow up
tf.keras.backend.clear_session()