diff --git "a/igv_component/node_modules/@types/node/crypto.d.ts" "b/igv_component/node_modules/@types/node/crypto.d.ts" new file mode 100644--- /dev/null +++ "b/igv_component/node_modules/@types/node/crypto.d.ts" @@ -0,0 +1,3961 @@ +/** + * The `crypto` module provides cryptographic functionality that includes a set of + * wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions. + * + * ```js + * const { createHmac } = await import('crypto'); + * + * const secret = 'abcdefg'; + * const hash = createHmac('sha256', secret) + * .update('I love cupcakes') + * .digest('hex'); + * console.log(hash); + * // Prints: + * // c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e + * ``` + * @see [source](https://github.com/nodejs/node/blob/v18.0.0/lib/crypto.js) + */ +declare module 'crypto' { + import * as stream from 'node:stream'; + import { PeerCertificate } from 'node:tls'; + /** + * SPKAC is a Certificate Signing Request mechanism originally implemented by + * Netscape and was specified formally as part of [HTML5's `keygen` element](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/keygen). + * + * `` is deprecated since [HTML 5.2](https://www.w3.org/TR/html52/changes.html#features-removed) and new projects + * should not use this element anymore. + * + * The `crypto` module provides the `Certificate` class for working with SPKAC + * data. The most common usage is handling output generated by the HTML5`` element. Node.js uses [OpenSSL's SPKAC + * implementation](https://www.openssl.org/docs/man1.1.0/apps/openssl-spkac.html) internally. + * @since v0.11.8 + */ + class Certificate { + /** + * ```js + * const { Certificate } = await import('crypto'); + * const spkac = getSpkacSomehow(); + * const challenge = Certificate.exportChallenge(spkac); + * console.log(challenge.toString('utf8')); + * // Prints: the challenge as a UTF8 string + * ``` + * @since v9.0.0 + * @param encoding The `encoding` of the `spkac` string. + * @return The challenge component of the `spkac` data structure, which includes a public key and a challenge. + */ + static exportChallenge(spkac: BinaryLike): Buffer; + /** + * ```js + * const { Certificate } = await import('crypto'); + * const spkac = getSpkacSomehow(); + * const publicKey = Certificate.exportPublicKey(spkac); + * console.log(publicKey); + * // Prints: the public key as + * ``` + * @since v9.0.0 + * @param encoding The `encoding` of the `spkac` string. + * @return The public key component of the `spkac` data structure, which includes a public key and a challenge. + */ + static exportPublicKey(spkac: BinaryLike, encoding?: string): Buffer; + /** + * ```js + * import { Buffer } from 'buffer'; + * const { Certificate } = await import('crypto'); + * + * const spkac = getSpkacSomehow(); + * console.log(Certificate.verifySpkac(Buffer.from(spkac))); + * // Prints: true or false + * ``` + * @since v9.0.0 + * @param encoding The `encoding` of the `spkac` string. + * @return `true` if the given `spkac` data structure is valid, `false` otherwise. + */ + static verifySpkac(spkac: NodeJS.ArrayBufferView): boolean; + /** + * @deprecated + * @param spkac + * @returns The challenge component of the `spkac` data structure, + * which includes a public key and a challenge. + */ + exportChallenge(spkac: BinaryLike): Buffer; + /** + * @deprecated + * @param spkac + * @param encoding The encoding of the spkac string. + * @returns The public key component of the `spkac` data structure, + * which includes a public key and a challenge. + */ + exportPublicKey(spkac: BinaryLike, encoding?: string): Buffer; + /** + * @deprecated + * @param spkac + * @returns `true` if the given `spkac` data structure is valid, + * `false` otherwise. + */ + verifySpkac(spkac: NodeJS.ArrayBufferView): boolean; + } + namespace constants { + // https://nodejs.org/dist/latest-v10.x/docs/api/crypto.html#crypto_crypto_constants + const OPENSSL_VERSION_NUMBER: number; + /** Applies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for detail. */ + const SSL_OP_ALL: number; + /** Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. */ + const SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION: number; + /** Attempts to use the server's preferences instead of the client's when selecting a cipher. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. */ + const SSL_OP_CIPHER_SERVER_PREFERENCE: number; + /** Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER. */ + const SSL_OP_CISCO_ANYCONNECT: number; + /** Instructs OpenSSL to turn on cookie exchange. */ + const SSL_OP_COOKIE_EXCHANGE: number; + /** Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft. */ + const SSL_OP_CRYPTOPRO_TLSEXT_BUG: number; + /** Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d. */ + const SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS: number; + /** Instructs OpenSSL to always use the tmp_rsa key when performing RSA operations. */ + const SSL_OP_EPHEMERAL_RSA: number; + /** Allows initial connection to servers that do not support RI. */ + const SSL_OP_LEGACY_SERVER_CONNECT: number; + const SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER: number; + const SSL_OP_MICROSOFT_SESS_ID_BUG: number; + /** Instructs OpenSSL to disable the workaround for a man-in-the-middle protocol-version vulnerability in the SSL 2.0 server implementation. */ + const SSL_OP_MSIE_SSLV2_RSA_PADDING: number; + const SSL_OP_NETSCAPE_CA_DN_BUG: number; + const SSL_OP_NETSCAPE_CHALLENGE_BUG: number; + const SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG: number; + const SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG: number; + /** Instructs OpenSSL to disable support for SSL/TLS compression. */ + const SSL_OP_NO_COMPRESSION: number; + const SSL_OP_NO_QUERY_MTU: number; + /** Instructs OpenSSL to always start a new session when performing renegotiation. */ + const SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION: number; + const SSL_OP_NO_SSLv2: number; + const SSL_OP_NO_SSLv3: number; + const SSL_OP_NO_TICKET: number; + const SSL_OP_NO_TLSv1: number; + const SSL_OP_NO_TLSv1_1: number; + const SSL_OP_NO_TLSv1_2: number; + const SSL_OP_PKCS1_CHECK_1: number; + const SSL_OP_PKCS1_CHECK_2: number; + /** Instructs OpenSSL to always create a new key when using temporary/ephemeral DH parameters. */ + const SSL_OP_SINGLE_DH_USE: number; + /** Instructs OpenSSL to always create a new key when using temporary/ephemeral ECDH parameters. */ + const SSL_OP_SINGLE_ECDH_USE: number; + const SSL_OP_SSLEAY_080_CLIENT_DH_BUG: number; + const SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG: number; + const SSL_OP_TLS_BLOCK_PADDING_BUG: number; + const SSL_OP_TLS_D5_BUG: number; + /** Instructs OpenSSL to disable version rollback attack detection. */ + const SSL_OP_TLS_ROLLBACK_BUG: number; + const ENGINE_METHOD_RSA: number; + const ENGINE_METHOD_DSA: number; + const ENGINE_METHOD_DH: number; + const ENGINE_METHOD_RAND: number; + const ENGINE_METHOD_EC: number; + const ENGINE_METHOD_CIPHERS: number; + const ENGINE_METHOD_DIGESTS: number; + const ENGINE_METHOD_PKEY_METHS: number; + const ENGINE_METHOD_PKEY_ASN1_METHS: number; + const ENGINE_METHOD_ALL: number; + const ENGINE_METHOD_NONE: number; + const DH_CHECK_P_NOT_SAFE_PRIME: number; + const DH_CHECK_P_NOT_PRIME: number; + const DH_UNABLE_TO_CHECK_GENERATOR: number; + const DH_NOT_SUITABLE_GENERATOR: number; + const ALPN_ENABLED: number; + const RSA_PKCS1_PADDING: number; + const RSA_SSLV23_PADDING: number; + const RSA_NO_PADDING: number; + const RSA_PKCS1_OAEP_PADDING: number; + const RSA_X931_PADDING: number; + const RSA_PKCS1_PSS_PADDING: number; + /** Sets the salt length for RSA_PKCS1_PSS_PADDING to the digest size when signing or verifying. */ + const RSA_PSS_SALTLEN_DIGEST: number; + /** Sets the salt length for RSA_PKCS1_PSS_PADDING to the maximum permissible value when signing data. */ + const RSA_PSS_SALTLEN_MAX_SIGN: number; + /** Causes the salt length for RSA_PKCS1_PSS_PADDING to be determined automatically when verifying a signature. */ + const RSA_PSS_SALTLEN_AUTO: number; + const POINT_CONVERSION_COMPRESSED: number; + const POINT_CONVERSION_UNCOMPRESSED: number; + const POINT_CONVERSION_HYBRID: number; + /** Specifies the built-in default cipher list used by Node.js (colon-separated values). */ + const defaultCoreCipherList: string; + /** Specifies the active default cipher list used by the current Node.js process (colon-separated values). */ + const defaultCipherList: string; + } + interface HashOptions extends stream.TransformOptions { + /** + * For XOF hash functions such as `shake256`, the + * outputLength option can be used to specify the desired output length in bytes. + */ + outputLength?: number | undefined; + } + /** @deprecated since v10.0.0 */ + const fips: boolean; + /** + * Creates and returns a `Hash` object that can be used to generate hash digests + * using the given `algorithm`. Optional `options` argument controls stream + * behavior. For XOF hash functions such as `'shake256'`, the `outputLength` option + * can be used to specify the desired output length in bytes. + * + * The `algorithm` is dependent on the available algorithms supported by the + * version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc. + * On recent releases of OpenSSL, `openssl list -digest-algorithms` will + * display the available digest algorithms. + * + * Example: generating the sha256 sum of a file + * + * ```js + * import { + * createReadStream + * } from 'fs'; + * import { argv } from 'process'; + * const { + * createHash + * } = await import('crypto'); + * + * const filename = argv[2]; + * + * const hash = createHash('sha256'); + * + * const input = createReadStream(filename); + * input.on('readable', () => { + * // Only one element is going to be produced by the + * // hash stream. + * const data = input.read(); + * if (data) + * hash.update(data); + * else { + * console.log(`${hash.digest('hex')} ${filename}`); + * } + * }); + * ``` + * @since v0.1.92 + * @param options `stream.transform` options + */ + function createHash(algorithm: string, options?: HashOptions): Hash; + /** + * Creates and returns an `Hmac` object that uses the given `algorithm` and `key`. + * Optional `options` argument controls stream behavior. + * + * The `algorithm` is dependent on the available algorithms supported by the + * version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc. + * On recent releases of OpenSSL, `openssl list -digest-algorithms` will + * display the available digest algorithms. + * + * The `key` is the HMAC key used to generate the cryptographic HMAC hash. If it is + * a `KeyObject`, its type must be `secret`. + * + * Example: generating the sha256 HMAC of a file + * + * ```js + * import { + * createReadStream + * } from 'fs'; + * import { argv } from 'process'; + * const { + * createHmac + * } = await import('crypto'); + * + * const filename = argv[2]; + * + * const hmac = createHmac('sha256', 'a secret'); + * + * const input = createReadStream(filename); + * input.on('readable', () => { + * // Only one element is going to be produced by the + * // hash stream. + * const data = input.read(); + * if (data) + * hmac.update(data); + * else { + * console.log(`${hmac.digest('hex')} ${filename}`); + * } + * }); + * ``` + * @since v0.1.94 + * @param options `stream.transform` options + */ + function createHmac(algorithm: string, key: BinaryLike | KeyObject, options?: stream.TransformOptions): Hmac; + // https://nodejs.org/api/buffer.html#buffer_buffers_and_character_encodings + type BinaryToTextEncoding = 'base64' | 'base64url' | 'hex' | 'binary'; + type CharacterEncoding = 'utf8' | 'utf-8' | 'utf16le' | 'latin1'; + type LegacyCharacterEncoding = 'ascii' | 'binary' | 'ucs2' | 'ucs-2'; + type Encoding = BinaryToTextEncoding | CharacterEncoding | LegacyCharacterEncoding; + type ECDHKeyFormat = 'compressed' | 'uncompressed' | 'hybrid'; + /** + * The `Hash` class is a utility for creating hash digests of data. It can be + * used in one of two ways: + * + * * As a `stream` that is both readable and writable, where data is written + * to produce a computed hash digest on the readable side, or + * * Using the `hash.update()` and `hash.digest()` methods to produce the + * computed hash. + * + * The {@link createHash} method is used to create `Hash` instances. `Hash`objects are not to be created directly using the `new` keyword. + * + * Example: Using `Hash` objects as streams: + * + * ```js + * const { + * createHash + * } = await import('crypto'); + * + * const hash = createHash('sha256'); + * + * hash.on('readable', () => { + * // Only one element is going to be produced by the + * // hash stream. + * const data = hash.read(); + * if (data) { + * console.log(data.toString('hex')); + * // Prints: + * // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 + * } + * }); + * + * hash.write('some data to hash'); + * hash.end(); + * ``` + * + * Example: Using `Hash` and piped streams: + * + * ```js + * import { createReadStream } from 'fs'; + * import { stdout } from 'process'; + * const { createHash } = await import('crypto'); + * + * const hash = createHash('sha256'); + * + * const input = createReadStream('test.js'); + * input.pipe(hash).setEncoding('hex').pipe(stdout); + * ``` + * + * Example: Using the `hash.update()` and `hash.digest()` methods: + * + * ```js + * const { + * createHash + * } = await import('crypto'); + * + * const hash = createHash('sha256'); + * + * hash.update('some data to hash'); + * console.log(hash.digest('hex')); + * // Prints: + * // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 + * ``` + * @since v0.1.92 + */ + class Hash extends stream.Transform { + private constructor(); + /** + * Creates a new `Hash` object that contains a deep copy of the internal state + * of the current `Hash` object. + * + * The optional `options` argument controls stream behavior. For XOF hash + * functions such as `'shake256'`, the `outputLength` option can be used to + * specify the desired output length in bytes. + * + * An error is thrown when an attempt is made to copy the `Hash` object after + * its `hash.digest()` method has been called. + * + * ```js + * // Calculate a rolling hash. + * const { + * createHash + * } = await import('crypto'); + * + * const hash = createHash('sha256'); + * + * hash.update('one'); + * console.log(hash.copy().digest('hex')); + * + * hash.update('two'); + * console.log(hash.copy().digest('hex')); + * + * hash.update('three'); + * console.log(hash.copy().digest('hex')); + * + * // Etc. + * ``` + * @since v13.1.0 + * @param options `stream.transform` options + */ + copy(options?: stream.TransformOptions): Hash; + /** + * Updates the hash content with the given `data`, the encoding of which + * is given in `inputEncoding`. + * If `encoding` is not provided, and the `data` is a string, an + * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored. + * + * This can be called many times with new data as it is streamed. + * @since v0.1.92 + * @param inputEncoding The `encoding` of the `data` string. + */ + update(data: BinaryLike): Hash; + update(data: string, inputEncoding: Encoding): Hash; + /** + * Calculates the digest of all of the data passed to be hashed (using the `hash.update()` method). + * If `encoding` is provided a string will be returned; otherwise + * a `Buffer` is returned. + * + * The `Hash` object can not be used again after `hash.digest()` method has been + * called. Multiple calls will cause an error to be thrown. + * @since v0.1.92 + * @param encoding The `encoding` of the return value. + */ + digest(): Buffer; + digest(encoding: BinaryToTextEncoding): string; + } + /** + * The `Hmac` class is a utility for creating cryptographic HMAC digests. It can + * be used in one of two ways: + * + * * As a `stream` that is both readable and writable, where data is written + * to produce a computed HMAC digest on the readable side, or + * * Using the `hmac.update()` and `hmac.digest()` methods to produce the + * computed HMAC digest. + * + * The {@link createHmac} method is used to create `Hmac` instances. `Hmac`objects are not to be created directly using the `new` keyword. + * + * Example: Using `Hmac` objects as streams: + * + * ```js + * const { + * createHmac + * } = await import('crypto'); + * + * const hmac = createHmac('sha256', 'a secret'); + * + * hmac.on('readable', () => { + * // Only one element is going to be produced by the + * // hash stream. + * const data = hmac.read(); + * if (data) { + * console.log(data.toString('hex')); + * // Prints: + * // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e + * } + * }); + * + * hmac.write('some data to hash'); + * hmac.end(); + * ``` + * + * Example: Using `Hmac` and piped streams: + * + * ```js + * import { createReadStream } from 'fs'; + * import { stdout } from 'process'; + * const { + * createHmac + * } = await import('crypto'); + * + * const hmac = createHmac('sha256', 'a secret'); + * + * const input = createReadStream('test.js'); + * input.pipe(hmac).pipe(stdout); + * ``` + * + * Example: Using the `hmac.update()` and `hmac.digest()` methods: + * + * ```js + * const { + * createHmac + * } = await import('crypto'); + * + * const hmac = createHmac('sha256', 'a secret'); + * + * hmac.update('some data to hash'); + * console.log(hmac.digest('hex')); + * // Prints: + * // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e + * ``` + * @since v0.1.94 + */ + class Hmac extends stream.Transform { + private constructor(); + /** + * Updates the `Hmac` content with the given `data`, the encoding of which + * is given in `inputEncoding`. + * If `encoding` is not provided, and the `data` is a string, an + * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored. + * + * This can be called many times with new data as it is streamed. + * @since v0.1.94 + * @param inputEncoding The `encoding` of the `data` string. + */ + update(data: BinaryLike): Hmac; + update(data: string, inputEncoding: Encoding): Hmac; + /** + * Calculates the HMAC digest of all of the data passed using `hmac.update()`. + * If `encoding` is + * provided a string is returned; otherwise a `Buffer` is returned; + * + * The `Hmac` object can not be used again after `hmac.digest()` has been + * called. Multiple calls to `hmac.digest()` will result in an error being thrown. + * @since v0.1.94 + * @param encoding The `encoding` of the return value. + */ + digest(): Buffer; + digest(encoding: BinaryToTextEncoding): string; + } + type KeyObjectType = 'secret' | 'public' | 'private'; + interface KeyExportOptions { + type: 'pkcs1' | 'spki' | 'pkcs8' | 'sec1'; + format: T; + cipher?: string | undefined; + passphrase?: string | Buffer | undefined; + } + interface JwkKeyExportOptions { + format: 'jwk'; + } + interface JsonWebKey { + crv?: string | undefined; + d?: string | undefined; + dp?: string | undefined; + dq?: string | undefined; + e?: string | undefined; + k?: string | undefined; + kty?: string | undefined; + n?: string | undefined; + p?: string | undefined; + q?: string | undefined; + qi?: string | undefined; + x?: string | undefined; + y?: string | undefined; + [key: string]: unknown; + } + interface AsymmetricKeyDetails { + /** + * Key size in bits (RSA, DSA). + */ + modulusLength?: number | undefined; + /** + * Public exponent (RSA). + */ + publicExponent?: bigint | undefined; + /** + * Name of the message digest (RSA-PSS). + */ + hashAlgorithm?: string | undefined; + /** + * Name of the message digest used by MGF1 (RSA-PSS). + */ + mgf1HashAlgorithm?: string | undefined; + /** + * Minimal salt length in bytes (RSA-PSS). + */ + saltLength?: number | undefined; + /** + * Size of q in bits (DSA). + */ + divisorLength?: number | undefined; + /** + * Name of the curve (EC). + */ + namedCurve?: string | undefined; + } + /** + * Node.js uses a `KeyObject` class to represent a symmetric or asymmetric key, + * and each kind of key exposes different functions. The {@link createSecretKey}, {@link createPublicKey} and {@link createPrivateKey} methods are used to create `KeyObject`instances. `KeyObject` + * objects are not to be created directly using the `new`keyword. + * + * Most applications should consider using the new `KeyObject` API instead of + * passing keys as strings or `Buffer`s due to improved security features. + * + * `KeyObject` instances can be passed to other threads via `postMessage()`. + * The receiver obtains a cloned `KeyObject`, and the `KeyObject` does not need to + * be listed in the `transferList` argument. + * @since v11.6.0 + */ + class KeyObject { + private constructor(); + /** + * Example: Converting a `CryptoKey` instance to a `KeyObject`: + * + * ```js + * const { webcrypto, KeyObject } = await import('crypto'); + * const { subtle } = webcrypto; + * + * const key = await subtle.generateKey({ + * name: 'HMAC', + * hash: 'SHA-256', + * length: 256 + * }, true, ['sign', 'verify']); + * + * const keyObject = KeyObject.from(key); + * console.log(keyObject.symmetricKeySize); + * // Prints: 32 (symmetric key size in bytes) + * ``` + * @since v15.0.0 + */ + static from(key: webcrypto.CryptoKey): KeyObject; + /** + * For asymmetric keys, this property represents the type of the key. Supported key + * types are: + * + * * `'rsa'` (OID 1.2.840.113549.1.1.1) + * * `'rsa-pss'` (OID 1.2.840.113549.1.1.10) + * * `'dsa'` (OID 1.2.840.10040.4.1) + * * `'ec'` (OID 1.2.840.10045.2.1) + * * `'x25519'` (OID 1.3.101.110) + * * `'x448'` (OID 1.3.101.111) + * * `'ed25519'` (OID 1.3.101.112) + * * `'ed448'` (OID 1.3.101.113) + * * `'dh'` (OID 1.2.840.113549.1.3.1) + * + * This property is `undefined` for unrecognized `KeyObject` types and symmetric + * keys. + * @since v11.6.0 + */ + asymmetricKeyType?: KeyType | undefined; + /** + * For asymmetric keys, this property represents the size of the embedded key in + * bytes. This property is `undefined` for symmetric keys. + */ + asymmetricKeySize?: number | undefined; + /** + * This property exists only on asymmetric keys. Depending on the type of the key, + * this object contains information about the key. None of the information obtained + * through this property can be used to uniquely identify a key or to compromise + * the security of the key. + * + * For RSA-PSS keys, if the key material contains a `RSASSA-PSS-params` sequence, + * the `hashAlgorithm`, `mgf1HashAlgorithm`, and `saltLength` properties will be + * set. + * + * Other key details might be exposed via this API using additional attributes. + * @since v15.7.0 + */ + asymmetricKeyDetails?: AsymmetricKeyDetails | undefined; + /** + * For symmetric keys, the following encoding options can be used: + * + * For public keys, the following encoding options can be used: + * + * For private keys, the following encoding options can be used: + * + * The result type depends on the selected encoding format, when PEM the + * result is a string, when DER it will be a buffer containing the data + * encoded as DER, when [JWK](https://tools.ietf.org/html/rfc7517) it will be an object. + * + * When [JWK](https://tools.ietf.org/html/rfc7517) encoding format was selected, all other encoding options are + * ignored. + * + * PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of + * the `cipher` and `format` options. The PKCS#8 `type` can be used with any`format` to encrypt any key algorithm (RSA, EC, or DH) by specifying a`cipher`. PKCS#1 and SEC1 can only be + * encrypted by specifying a `cipher`when the PEM `format` is used. For maximum compatibility, use PKCS#8 for + * encrypted private keys. Since PKCS#8 defines its own + * encryption mechanism, PEM-level encryption is not supported when encrypting + * a PKCS#8 key. See [RFC 5208](https://www.rfc-editor.org/rfc/rfc5208.txt) for PKCS#8 encryption and [RFC 1421](https://www.rfc-editor.org/rfc/rfc1421.txt) for + * PKCS#1 and SEC1 encryption. + * @since v11.6.0 + */ + export(options: KeyExportOptions<'pem'>): string | Buffer; + export(options?: KeyExportOptions<'der'>): Buffer; + export(options?: JwkKeyExportOptions): JsonWebKey; + /** + * For secret keys, this property represents the size of the key in bytes. This + * property is `undefined` for asymmetric keys. + * @since v11.6.0 + */ + symmetricKeySize?: number | undefined; + /** + * Depending on the type of this `KeyObject`, this property is either`'secret'` for secret (symmetric) keys, `'public'` for public (asymmetric) keys + * or `'private'` for private (asymmetric) keys. + * @since v11.6.0 + */ + type: KeyObjectType; + } + type CipherCCMTypes = 'aes-128-ccm' | 'aes-192-ccm' | 'aes-256-ccm' | 'chacha20-poly1305'; + type CipherGCMTypes = 'aes-128-gcm' | 'aes-192-gcm' | 'aes-256-gcm'; + type CipherOCBTypes = 'aes-128-ocb' | 'aes-192-ocb' | 'aes-256-ocb'; + type BinaryLike = string | NodeJS.ArrayBufferView; + type CipherKey = BinaryLike | KeyObject; + interface CipherCCMOptions extends stream.TransformOptions { + authTagLength: number; + } + interface CipherGCMOptions extends stream.TransformOptions { + authTagLength?: number | undefined; + } + interface CipherOCBOptions extends stream.TransformOptions { + authTagLength: number; + } + /** + * Creates and returns a `Cipher` object that uses the given `algorithm` and`password`. + * + * The `options` argument controls stream behavior and is optional except when a + * cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the + * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to set the length of the authentication + * tag that will be returned by `getAuthTag()` and defaults to 16 bytes. + * For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes. + * + * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On + * recent OpenSSL releases, `openssl list -cipher-algorithms` will + * display the available cipher algorithms. + * + * The `password` is used to derive the cipher key and initialization vector (IV). + * The value must be either a `'latin1'` encoded string, a `Buffer`, a`TypedArray`, or a `DataView`. + * + * The implementation of `crypto.createCipher()` derives keys using the OpenSSL + * function [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) with the digest algorithm set to MD5, one + * iteration, and no salt. The lack of salt allows dictionary attacks as the same + * password always creates the same key. The low iteration count and + * non-cryptographically secure hash algorithm allow passwords to be tested very + * rapidly. + * + * In line with OpenSSL's recommendation to use a more modern algorithm instead of [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) it is recommended that + * developers derive a key and IV on + * their own using {@link scrypt} and to use {@link createCipheriv} to create the `Cipher` object. Users should not use ciphers with counter mode + * (e.g. CTR, GCM, or CCM) in `crypto.createCipher()`. A warning is emitted when + * they are used in order to avoid the risk of IV reuse that causes + * vulnerabilities. For the case when IV is reused in GCM, see [Nonce-Disrespecting Adversaries](https://github.com/nonce-disrespect/nonce-disrespect) for details. + * @since v0.1.94 + * @deprecated Since v10.0.0 - Use {@link createCipheriv} instead. + * @param options `stream.transform` options + */ + function createCipher(algorithm: CipherCCMTypes, password: BinaryLike, options: CipherCCMOptions): CipherCCM; + /** @deprecated since v10.0.0 use `createCipheriv()` */ + function createCipher(algorithm: CipherGCMTypes, password: BinaryLike, options?: CipherGCMOptions): CipherGCM; + /** @deprecated since v10.0.0 use `createCipheriv()` */ + function createCipher(algorithm: string, password: BinaryLike, options?: stream.TransformOptions): Cipher; + /** + * Creates and returns a `Cipher` object, with the given `algorithm`, `key` and + * initialization vector (`iv`). + * + * The `options` argument controls stream behavior and is optional except when a + * cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the + * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to set the length of the authentication + * tag that will be returned by `getAuthTag()` and defaults to 16 bytes. + * For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes. + * + * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On + * recent OpenSSL releases, `openssl list -cipher-algorithms` will + * display the available cipher algorithms. + * + * The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector](https://en.wikipedia.org/wiki/Initialization_vector). Both arguments must be `'utf8'` encoded + * strings,`Buffers`, `TypedArray`, or `DataView`s. The `key` may optionally be + * a `KeyObject` of type `secret`. If the cipher does not need + * an initialization vector, `iv` may be `null`. + * + * When passing strings for `key` or `iv`, please consider `caveats when using strings as inputs to cryptographic APIs`. + * + * Initialization vectors should be unpredictable and unique; ideally, they will be + * cryptographically random. They do not have to be secret: IVs are typically just + * added to ciphertext messages unencrypted. It may sound contradictory that + * something has to be unpredictable and unique, but does not have to be secret; + * remember that an attacker must not be able to predict ahead of time what a + * given IV will be. + * @since v0.1.94 + * @param options `stream.transform` options + */ + function createCipheriv(algorithm: CipherCCMTypes, key: CipherKey, iv: BinaryLike, options: CipherCCMOptions): CipherCCM; + function createCipheriv(algorithm: CipherOCBTypes, key: CipherKey, iv: BinaryLike, options: CipherOCBOptions): CipherOCB; + function createCipheriv(algorithm: CipherGCMTypes, key: CipherKey, iv: BinaryLike, options?: CipherGCMOptions): CipherGCM; + function createCipheriv(algorithm: string, key: CipherKey, iv: BinaryLike | null, options?: stream.TransformOptions): Cipher; + /** + * Instances of the `Cipher` class are used to encrypt data. The class can be + * used in one of two ways: + * + * * As a `stream` that is both readable and writable, where plain unencrypted + * data is written to produce encrypted data on the readable side, or + * * Using the `cipher.update()` and `cipher.final()` methods to produce + * the encrypted data. + * + * The {@link createCipher} or {@link createCipheriv} methods are + * used to create `Cipher` instances. `Cipher` objects are not to be created + * directly using the `new` keyword. + * + * Example: Using `Cipher` objects as streams: + * + * ```js + * const { + * scrypt, + * randomFill, + * createCipheriv + * } = await import('crypto'); + * + * const algorithm = 'aes-192-cbc'; + * const password = 'Password used to generate key'; + * + * // First, we'll generate the key. The key length is dependent on the algorithm. + * // In this case for aes192, it is 24 bytes (192 bits). + * scrypt(password, 'salt', 24, (err, key) => { + * if (err) throw err; + * // Then, we'll generate a random initialization vector + * randomFill(new Uint8Array(16), (err, iv) => { + * if (err) throw err; + * + * // Once we have the key and iv, we can create and use the cipher... + * const cipher = createCipheriv(algorithm, key, iv); + * + * let encrypted = ''; + * cipher.setEncoding('hex'); + * + * cipher.on('data', (chunk) => encrypted += chunk); + * cipher.on('end', () => console.log(encrypted)); + * + * cipher.write('some clear text data'); + * cipher.end(); + * }); + * }); + * ``` + * + * Example: Using `Cipher` and piped streams: + * + * ```js + * import { + * createReadStream, + * createWriteStream, + * } from 'fs'; + * + * import { + * pipeline + * } from 'stream'; + * + * const { + * scrypt, + * randomFill, + * createCipheriv + * } = await import('crypto'); + * + * const algorithm = 'aes-192-cbc'; + * const password = 'Password used to generate key'; + * + * // First, we'll generate the key. The key length is dependent on the algorithm. + * // In this case for aes192, it is 24 bytes (192 bits). + * scrypt(password, 'salt', 24, (err, key) => { + * if (err) throw err; + * // Then, we'll generate a random initialization vector + * randomFill(new Uint8Array(16), (err, iv) => { + * if (err) throw err; + * + * const cipher = createCipheriv(algorithm, key, iv); + * + * const input = createReadStream('test.js'); + * const output = createWriteStream('test.enc'); + * + * pipeline(input, cipher, output, (err) => { + * if (err) throw err; + * }); + * }); + * }); + * ``` + * + * Example: Using the `cipher.update()` and `cipher.final()` methods: + * + * ```js + * const { + * scrypt, + * randomFill, + * createCipheriv + * } = await import('crypto'); + * + * const algorithm = 'aes-192-cbc'; + * const password = 'Password used to generate key'; + * + * // First, we'll generate the key. The key length is dependent on the algorithm. + * // In this case for aes192, it is 24 bytes (192 bits). + * scrypt(password, 'salt', 24, (err, key) => { + * if (err) throw err; + * // Then, we'll generate a random initialization vector + * randomFill(new Uint8Array(16), (err, iv) => { + * if (err) throw err; + * + * const cipher = createCipheriv(algorithm, key, iv); + * + * let encrypted = cipher.update('some clear text data', 'utf8', 'hex'); + * encrypted += cipher.final('hex'); + * console.log(encrypted); + * }); + * }); + * ``` + * @since v0.1.94 + */ + class Cipher extends stream.Transform { + private constructor(); + /** + * Updates the cipher with `data`. If the `inputEncoding` argument is given, + * the `data`argument is a string using the specified encoding. If the `inputEncoding`argument is not given, `data` must be a `Buffer`, `TypedArray`, or`DataView`. If `data` is a `Buffer`, + * `TypedArray`, or `DataView`, then`inputEncoding` is ignored. + * + * The `outputEncoding` specifies the output format of the enciphered + * data. If the `outputEncoding`is specified, a string using the specified encoding is returned. If no`outputEncoding` is provided, a `Buffer` is returned. + * + * The `cipher.update()` method can be called multiple times with new data until `cipher.final()` is called. Calling `cipher.update()` after `cipher.final()` will result in an error being + * thrown. + * @since v0.1.94 + * @param inputEncoding The `encoding` of the data. + * @param outputEncoding The `encoding` of the return value. + */ + update(data: BinaryLike): Buffer; + update(data: string, inputEncoding: Encoding): Buffer; + update(data: NodeJS.ArrayBufferView, inputEncoding: undefined, outputEncoding: Encoding): string; + update(data: string, inputEncoding: Encoding | undefined, outputEncoding: Encoding): string; + /** + * Once the `cipher.final()` method has been called, the `Cipher` object can no + * longer be used to encrypt data. Attempts to call `cipher.final()` more than + * once will result in an error being thrown. + * @since v0.1.94 + * @param outputEncoding The `encoding` of the return value. + * @return Any remaining enciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a {@link Buffer} is returned. + */ + final(): Buffer; + final(outputEncoding: BufferEncoding): string; + /** + * When using block encryption algorithms, the `Cipher` class will automatically + * add padding to the input data to the appropriate block size. To disable the + * default padding call `cipher.setAutoPadding(false)`. + * + * When `autoPadding` is `false`, the length of the entire input data must be a + * multiple of the cipher's block size or `cipher.final()` will throw an error. + * Disabling automatic padding is useful for non-standard padding, for instance + * using `0x0` instead of PKCS padding. + * + * The `cipher.setAutoPadding()` method must be called before `cipher.final()`. + * @since v0.7.1 + * @param [autoPadding=true] + * @return for method chaining. + */ + setAutoPadding(autoPadding?: boolean): this; + } + interface CipherCCM extends Cipher { + setAAD( + buffer: NodeJS.ArrayBufferView, + options: { + plaintextLength: number; + } + ): this; + getAuthTag(): Buffer; + } + interface CipherGCM extends Cipher { + setAAD( + buffer: NodeJS.ArrayBufferView, + options?: { + plaintextLength: number; + } + ): this; + getAuthTag(): Buffer; + } + interface CipherOCB extends Cipher { + setAAD( + buffer: NodeJS.ArrayBufferView, + options?: { + plaintextLength: number; + } + ): this; + getAuthTag(): Buffer; + } + /** + * Creates and returns a `Decipher` object that uses the given `algorithm` and`password` (key). + * + * The `options` argument controls stream behavior and is optional except when a + * cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the + * authentication tag in bytes, see `CCM mode`. + * For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes. + * + * The implementation of `crypto.createDecipher()` derives keys using the OpenSSL + * function [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) with the digest algorithm set to MD5, one + * iteration, and no salt. The lack of salt allows dictionary attacks as the same + * password always creates the same key. The low iteration count and + * non-cryptographically secure hash algorithm allow passwords to be tested very + * rapidly. + * + * In line with OpenSSL's recommendation to use a more modern algorithm instead of [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) it is recommended that + * developers derive a key and IV on + * their own using {@link scrypt} and to use {@link createDecipheriv} to create the `Decipher` object. + * @since v0.1.94 + * @deprecated Since v10.0.0 - Use {@link createDecipheriv} instead. + * @param options `stream.transform` options + */ + function createDecipher(algorithm: CipherCCMTypes, password: BinaryLike, options: CipherCCMOptions): DecipherCCM; + /** @deprecated since v10.0.0 use `createDecipheriv()` */ + function createDecipher(algorithm: CipherGCMTypes, password: BinaryLike, options?: CipherGCMOptions): DecipherGCM; + /** @deprecated since v10.0.0 use `createDecipheriv()` */ + function createDecipher(algorithm: string, password: BinaryLike, options?: stream.TransformOptions): Decipher; + /** + * Creates and returns a `Decipher` object that uses the given `algorithm`, `key`and initialization vector (`iv`). + * + * The `options` argument controls stream behavior and is optional except when a + * cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the + * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to restrict accepted authentication tags + * to those with the specified length. + * For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes. + * + * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On + * recent OpenSSL releases, `openssl list -cipher-algorithms` will + * display the available cipher algorithms. + * + * The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector](https://en.wikipedia.org/wiki/Initialization_vector). Both arguments must be `'utf8'` encoded + * strings,`Buffers`, `TypedArray`, or `DataView`s. The `key` may optionally be + * a `KeyObject` of type `secret`. If the cipher does not need + * an initialization vector, `iv` may be `null`. + * + * When passing strings for `key` or `iv`, please consider `caveats when using strings as inputs to cryptographic APIs`. + * + * Initialization vectors should be unpredictable and unique; ideally, they will be + * cryptographically random. They do not have to be secret: IVs are typically just + * added to ciphertext messages unencrypted. It may sound contradictory that + * something has to be unpredictable and unique, but does not have to be secret; + * remember that an attacker must not be able to predict ahead of time what a given + * IV will be. + * @since v0.1.94 + * @param options `stream.transform` options + */ + function createDecipheriv(algorithm: CipherCCMTypes, key: CipherKey, iv: BinaryLike, options: CipherCCMOptions): DecipherCCM; + function createDecipheriv(algorithm: CipherOCBTypes, key: CipherKey, iv: BinaryLike, options: CipherOCBOptions): DecipherOCB; + function createDecipheriv(algorithm: CipherGCMTypes, key: CipherKey, iv: BinaryLike, options?: CipherGCMOptions): DecipherGCM; + function createDecipheriv(algorithm: string, key: CipherKey, iv: BinaryLike | null, options?: stream.TransformOptions): Decipher; + /** + * Instances of the `Decipher` class are used to decrypt data. The class can be + * used in one of two ways: + * + * * As a `stream` that is both readable and writable, where plain encrypted + * data is written to produce unencrypted data on the readable side, or + * * Using the `decipher.update()` and `decipher.final()` methods to + * produce the unencrypted data. + * + * The {@link createDecipher} or {@link createDecipheriv} methods are + * used to create `Decipher` instances. `Decipher` objects are not to be created + * directly using the `new` keyword. + * + * Example: Using `Decipher` objects as streams: + * + * ```js + * import { Buffer } from 'buffer'; + * const { + * scryptSync, + * createDecipheriv + * } = await import('crypto'); + * + * const algorithm = 'aes-192-cbc'; + * const password = 'Password used to generate key'; + * // Key length is dependent on the algorithm. In this case for aes192, it is + * // 24 bytes (192 bits). + * // Use the async `crypto.scrypt()` instead. + * const key = scryptSync(password, 'salt', 24); + * // The IV is usually passed along with the ciphertext. + * const iv = Buffer.alloc(16, 0); // Initialization vector. + * + * const decipher = createDecipheriv(algorithm, key, iv); + * + * let decrypted = ''; + * decipher.on('readable', () => { + * while (null !== (chunk = decipher.read())) { + * decrypted += chunk.toString('utf8'); + * } + * }); + * decipher.on('end', () => { + * console.log(decrypted); + * // Prints: some clear text data + * }); + * + * // Encrypted with same algorithm, key and iv. + * const encrypted = + * 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; + * decipher.write(encrypted, 'hex'); + * decipher.end(); + * ``` + * + * Example: Using `Decipher` and piped streams: + * + * ```js + * import { + * createReadStream, + * createWriteStream, + * } from 'fs'; + * import { Buffer } from 'buffer'; + * const { + * scryptSync, + * createDecipheriv + * } = await import('crypto'); + * + * const algorithm = 'aes-192-cbc'; + * const password = 'Password used to generate key'; + * // Use the async `crypto.scrypt()` instead. + * const key = scryptSync(password, 'salt', 24); + * // The IV is usually passed along with the ciphertext. + * const iv = Buffer.alloc(16, 0); // Initialization vector. + * + * const decipher = createDecipheriv(algorithm, key, iv); + * + * const input = createReadStream('test.enc'); + * const output = createWriteStream('test.js'); + * + * input.pipe(decipher).pipe(output); + * ``` + * + * Example: Using the `decipher.update()` and `decipher.final()` methods: + * + * ```js + * import { Buffer } from 'buffer'; + * const { + * scryptSync, + * createDecipheriv + * } = await import('crypto'); + * + * const algorithm = 'aes-192-cbc'; + * const password = 'Password used to generate key'; + * // Use the async `crypto.scrypt()` instead. + * const key = scryptSync(password, 'salt', 24); + * // The IV is usually passed along with the ciphertext. + * const iv = Buffer.alloc(16, 0); // Initialization vector. + * + * const decipher = createDecipheriv(algorithm, key, iv); + * + * // Encrypted using same algorithm, key and iv. + * const encrypted = + * 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; + * let decrypted = decipher.update(encrypted, 'hex', 'utf8'); + * decrypted += decipher.final('utf8'); + * console.log(decrypted); + * // Prints: some clear text data + * ``` + * @since v0.1.94 + */ + class Decipher extends stream.Transform { + private constructor(); + /** + * Updates the decipher with `data`. If the `inputEncoding` argument is given, + * the `data`argument is a string using the specified encoding. If the `inputEncoding`argument is not given, `data` must be a `Buffer`. If `data` is a `Buffer` then `inputEncoding` is + * ignored. + * + * The `outputEncoding` specifies the output format of the enciphered + * data. If the `outputEncoding`is specified, a string using the specified encoding is returned. If no`outputEncoding` is provided, a `Buffer` is returned. + * + * The `decipher.update()` method can be called multiple times with new data until `decipher.final()` is called. Calling `decipher.update()` after `decipher.final()` will result in an error + * being thrown. + * @since v0.1.94 + * @param inputEncoding The `encoding` of the `data` string. + * @param outputEncoding The `encoding` of the return value. + */ + update(data: NodeJS.ArrayBufferView): Buffer; + update(data: string, inputEncoding: Encoding): Buffer; + update(data: NodeJS.ArrayBufferView, inputEncoding: undefined, outputEncoding: Encoding): string; + update(data: string, inputEncoding: Encoding | undefined, outputEncoding: Encoding): string; + /** + * Once the `decipher.final()` method has been called, the `Decipher` object can + * no longer be used to decrypt data. Attempts to call `decipher.final()` more + * than once will result in an error being thrown. + * @since v0.1.94 + * @param outputEncoding The `encoding` of the return value. + * @return Any remaining deciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a {@link Buffer} is returned. + */ + final(): Buffer; + final(outputEncoding: BufferEncoding): string; + /** + * When data has been encrypted without standard block padding, calling`decipher.setAutoPadding(false)` will disable automatic padding to prevent `decipher.final()` from checking for and + * removing padding. + * + * Turning auto padding off will only work if the input data's length is a + * multiple of the ciphers block size. + * + * The `decipher.setAutoPadding()` method must be called before `decipher.final()`. + * @since v0.7.1 + * @param [autoPadding=true] + * @return for method chaining. + */ + setAutoPadding(auto_padding?: boolean): this; + } + interface DecipherCCM extends Decipher { + setAuthTag(buffer: NodeJS.ArrayBufferView): this; + setAAD( + buffer: NodeJS.ArrayBufferView, + options: { + plaintextLength: number; + } + ): this; + } + interface DecipherGCM extends Decipher { + setAuthTag(buffer: NodeJS.ArrayBufferView): this; + setAAD( + buffer: NodeJS.ArrayBufferView, + options?: { + plaintextLength: number; + } + ): this; + } + interface DecipherOCB extends Decipher { + setAuthTag(buffer: NodeJS.ArrayBufferView): this; + setAAD( + buffer: NodeJS.ArrayBufferView, + options?: { + plaintextLength: number; + } + ): this; + } + interface PrivateKeyInput { + key: string | Buffer; + format?: KeyFormat | undefined; + type?: 'pkcs1' | 'pkcs8' | 'sec1' | undefined; + passphrase?: string | Buffer | undefined; + } + interface PublicKeyInput { + key: string | Buffer; + format?: KeyFormat | undefined; + type?: 'pkcs1' | 'spki' | undefined; + } + /** + * Asynchronously generates a new random secret key of the given `length`. The`type` will determine which validations will be performed on the `length`. + * + * ```js + * const { + * generateKey + * } = await import('crypto'); + * + * generateKey('hmac', { length: 64 }, (err, key) => { + * if (err) throw err; + * console.log(key.export().toString('hex')); // 46e..........620 + * }); + * ``` + * @since v15.0.0 + * @param type The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`. + */ + function generateKey( + type: 'hmac' | 'aes', + options: { + length: number; + }, + callback: (err: Error | null, key: KeyObject) => void + ): void; + /** + * Synchronously generates a new random secret key of the given `length`. The`type` will determine which validations will be performed on the `length`. + * + * ```js + * const { + * generateKeySync + * } = await import('crypto'); + * + * const key = generateKeySync('hmac', { length: 64 }); + * console.log(key.export().toString('hex')); // e89..........41e + * ``` + * @since v15.0.0 + * @param type The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`. + */ + function generateKeySync( + type: 'hmac' | 'aes', + options: { + length: number; + } + ): KeyObject; + interface JsonWebKeyInput { + key: JsonWebKey; + format: 'jwk'; + } + /** + * Creates and returns a new key object containing a private key. If `key` is a + * string or `Buffer`, `format` is assumed to be `'pem'`; otherwise, `key`must be an object with the properties described above. + * + * If the private key is encrypted, a `passphrase` must be specified. The length + * of the passphrase is limited to 1024 bytes. + * @since v11.6.0 + */ + function createPrivateKey(key: PrivateKeyInput | string | Buffer | JsonWebKeyInput): KeyObject; + /** + * Creates and returns a new key object containing a public key. If `key` is a + * string or `Buffer`, `format` is assumed to be `'pem'`; if `key` is a `KeyObject`with type `'private'`, the public key is derived from the given private key; + * otherwise, `key` must be an object with the properties described above. + * + * If the format is `'pem'`, the `'key'` may also be an X.509 certificate. + * + * Because public keys can be derived from private keys, a private key may be + * passed instead of a public key. In that case, this function behaves as if {@link createPrivateKey} had been called, except that the type of the + * returned `KeyObject` will be `'public'` and that the private key cannot be + * extracted from the returned `KeyObject`. Similarly, if a `KeyObject` with type`'private'` is given, a new `KeyObject` with type `'public'` will be returned + * and it will be impossible to extract the private key from the returned object. + * @since v11.6.0 + */ + function createPublicKey(key: PublicKeyInput | string | Buffer | KeyObject | JsonWebKeyInput): KeyObject; + /** + * Creates and returns a new key object containing a secret key for symmetric + * encryption or `Hmac`. + * @since v11.6.0 + * @param encoding The string encoding when `key` is a string. + */ + function createSecretKey(key: NodeJS.ArrayBufferView): KeyObject; + function createSecretKey(key: string, encoding: BufferEncoding): KeyObject; + /** + * Creates and returns a `Sign` object that uses the given `algorithm`. Use {@link getHashes} to obtain the names of the available digest algorithms. + * Optional `options` argument controls the `stream.Writable` behavior. + * + * In some cases, a `Sign` instance can be created using the name of a signature + * algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use + * the corresponding digest algorithm. This does not work for all signature + * algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest + * algorithm names. + * @since v0.1.92 + * @param options `stream.Writable` options + */ + function createSign(algorithm: string, options?: stream.WritableOptions): Sign; + type DSAEncoding = 'der' | 'ieee-p1363'; + interface SigningOptions { + /** + * @See crypto.constants.RSA_PKCS1_PADDING + */ + padding?: number | undefined; + saltLength?: number | undefined; + dsaEncoding?: DSAEncoding | undefined; + } + interface SignPrivateKeyInput extends PrivateKeyInput, SigningOptions {} + interface SignKeyObjectInput extends SigningOptions { + key: KeyObject; + } + interface VerifyPublicKeyInput extends PublicKeyInput, SigningOptions {} + interface VerifyKeyObjectInput extends SigningOptions { + key: KeyObject; + } + type KeyLike = string | Buffer | KeyObject; + /** + * The `Sign` class is a utility for generating signatures. It can be used in one + * of two ways: + * + * * As a writable `stream`, where data to be signed is written and the `sign.sign()` method is used to generate and return the signature, or + * * Using the `sign.update()` and `sign.sign()` methods to produce the + * signature. + * + * The {@link createSign} method is used to create `Sign` instances. The + * argument is the string name of the hash function to use. `Sign` objects are not + * to be created directly using the `new` keyword. + * + * Example: Using `Sign` and `Verify` objects as streams: + * + * ```js + * const { + * generateKeyPairSync, + * createSign, + * createVerify + * } = await import('crypto'); + * + * const { privateKey, publicKey } = generateKeyPairSync('ec', { + * namedCurve: 'sect239k1' + * }); + * + * const sign = createSign('SHA256'); + * sign.write('some data to sign'); + * sign.end(); + * const signature = sign.sign(privateKey, 'hex'); + * + * const verify = createVerify('SHA256'); + * verify.write('some data to sign'); + * verify.end(); + * console.log(verify.verify(publicKey, signature, 'hex')); + * // Prints: true + * ``` + * + * Example: Using the `sign.update()` and `verify.update()` methods: + * + * ```js + * const { + * generateKeyPairSync, + * createSign, + * createVerify + * } = await import('crypto'); + * + * const { privateKey, publicKey } = generateKeyPairSync('rsa', { + * modulusLength: 2048, + * }); + * + * const sign = createSign('SHA256'); + * sign.update('some data to sign'); + * sign.end(); + * const signature = sign.sign(privateKey); + * + * const verify = createVerify('SHA256'); + * verify.update('some data to sign'); + * verify.end(); + * console.log(verify.verify(publicKey, signature)); + * // Prints: true + * ``` + * @since v0.1.92 + */ + class Sign extends stream.Writable { + private constructor(); + /** + * Updates the `Sign` content with the given `data`, the encoding of which + * is given in `inputEncoding`. + * If `encoding` is not provided, and the `data` is a string, an + * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored. + * + * This can be called many times with new data as it is streamed. + * @since v0.1.92 + * @param inputEncoding The `encoding` of the `data` string. + */ + update(data: BinaryLike): this; + update(data: string, inputEncoding: Encoding): this; + /** + * Calculates the signature on all the data passed through using either `sign.update()` or `sign.write()`. + * + * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an + * object, the following additional properties can be passed: + * + * If `outputEncoding` is provided a string is returned; otherwise a `Buffer` is returned. + * + * The `Sign` object can not be again used after `sign.sign()` method has been + * called. Multiple calls to `sign.sign()` will result in an error being thrown. + * @since v0.1.92 + */ + sign(privateKey: KeyLike | SignKeyObjectInput | SignPrivateKeyInput): Buffer; + sign(privateKey: KeyLike | SignKeyObjectInput | SignPrivateKeyInput, outputFormat: BinaryToTextEncoding): string; + } + /** + * Creates and returns a `Verify` object that uses the given algorithm. + * Use {@link getHashes} to obtain an array of names of the available + * signing algorithms. Optional `options` argument controls the`stream.Writable` behavior. + * + * In some cases, a `Verify` instance can be created using the name of a signature + * algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use + * the corresponding digest algorithm. This does not work for all signature + * algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest + * algorithm names. + * @since v0.1.92 + * @param options `stream.Writable` options + */ + function createVerify(algorithm: string, options?: stream.WritableOptions): Verify; + /** + * The `Verify` class is a utility for verifying signatures. It can be used in one + * of two ways: + * + * * As a writable `stream` where written data is used to validate against the + * supplied signature, or + * * Using the `verify.update()` and `verify.verify()` methods to verify + * the signature. + * + * The {@link createVerify} method is used to create `Verify` instances.`Verify` objects are not to be created directly using the `new` keyword. + * + * See `Sign` for examples. + * @since v0.1.92 + */ + class Verify extends stream.Writable { + private constructor(); + /** + * Updates the `Verify` content with the given `data`, the encoding of which + * is given in `inputEncoding`. + * If `inputEncoding` is not provided, and the `data` is a string, an + * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored. + * + * This can be called many times with new data as it is streamed. + * @since v0.1.92 + * @param inputEncoding The `encoding` of the `data` string. + */ + update(data: BinaryLike): Verify; + update(data: string, inputEncoding: Encoding): Verify; + /** + * Verifies the provided data using the given `object` and `signature`. + * + * If `object` is not a `KeyObject`, this function behaves as if`object` had been passed to {@link createPublicKey}. If it is an + * object, the following additional properties can be passed: + * + * The `signature` argument is the previously calculated signature for the data, in + * the `signatureEncoding`. + * If a `signatureEncoding` is specified, the `signature` is expected to be a + * string; otherwise `signature` is expected to be a `Buffer`,`TypedArray`, or `DataView`. + * + * The `verify` object can not be used again after `verify.verify()` has been + * called. Multiple calls to `verify.verify()` will result in an error being + * thrown. + * + * Because public keys can be derived from private keys, a private key may + * be passed instead of a public key. + * @since v0.1.92 + */ + verify(object: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: NodeJS.ArrayBufferView): boolean; + verify(object: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: string, signature_format?: BinaryToTextEncoding): boolean; + } + /** + * Creates a `DiffieHellman` key exchange object using the supplied `prime` and an + * optional specific `generator`. + * + * The `generator` argument can be a number, string, or `Buffer`. If`generator` is not specified, the value `2` is used. + * + * If `primeEncoding` is specified, `prime` is expected to be a string; otherwise + * a `Buffer`, `TypedArray`, or `DataView` is expected. + * + * If `generatorEncoding` is specified, `generator` is expected to be a string; + * otherwise a number, `Buffer`, `TypedArray`, or `DataView` is expected. + * @since v0.11.12 + * @param primeEncoding The `encoding` of the `prime` string. + * @param [generator=2] + * @param generatorEncoding The `encoding` of the `generator` string. + */ + function createDiffieHellman(primeLength: number, generator?: number): DiffieHellman; + function createDiffieHellman(prime: ArrayBuffer | NodeJS.ArrayBufferView, generator?: number | ArrayBuffer | NodeJS.ArrayBufferView): DiffieHellman; + function createDiffieHellman(prime: ArrayBuffer | NodeJS.ArrayBufferView, generator: string, generatorEncoding: BinaryToTextEncoding): DiffieHellman; + function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding, generator?: number | ArrayBuffer | NodeJS.ArrayBufferView): DiffieHellman; + function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding, generator: string, generatorEncoding: BinaryToTextEncoding): DiffieHellman; + /** + * The `DiffieHellman` class is a utility for creating Diffie-Hellman key + * exchanges. + * + * Instances of the `DiffieHellman` class can be created using the {@link createDiffieHellman} function. + * + * ```js + * import assert from 'assert'; + * + * const { + * createDiffieHellman + * } = await import('crypto'); + * + * // Generate Alice's keys... + * const alice = createDiffieHellman(2048); + * const aliceKey = alice.generateKeys(); + * + * // Generate Bob's keys... + * const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator()); + * const bobKey = bob.generateKeys(); + * + * // Exchange and generate the secret... + * const aliceSecret = alice.computeSecret(bobKey); + * const bobSecret = bob.computeSecret(aliceKey); + * + * // OK + * assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); + * ``` + * @since v0.5.0 + */ + class DiffieHellman { + private constructor(); + /** + * Generates private and public Diffie-Hellman key values, and returns + * the public key in the specified `encoding`. This key should be + * transferred to the other party. + * If `encoding` is provided a string is returned; otherwise a `Buffer` is returned. + * @since v0.5.0 + * @param encoding The `encoding` of the return value. + */ + generateKeys(): Buffer; + generateKeys(encoding: BinaryToTextEncoding): string; + /** + * Computes the shared secret using `otherPublicKey` as the other + * party's public key and returns the computed shared secret. The supplied + * key is interpreted using the specified `inputEncoding`, and secret is + * encoded using specified `outputEncoding`. + * If the `inputEncoding` is not + * provided, `otherPublicKey` is expected to be a `Buffer`,`TypedArray`, or `DataView`. + * + * If `outputEncoding` is given a string is returned; otherwise, a `Buffer` is returned. + * @since v0.5.0 + * @param inputEncoding The `encoding` of an `otherPublicKey` string. + * @param outputEncoding The `encoding` of the return value. + */ + computeSecret(otherPublicKey: NodeJS.ArrayBufferView, inputEncoding?: null, outputEncoding?: null): Buffer; + computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding?: null): Buffer; + computeSecret(otherPublicKey: NodeJS.ArrayBufferView, inputEncoding: null, outputEncoding: BinaryToTextEncoding): string; + computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding: BinaryToTextEncoding): string; + /** + * Returns the Diffie-Hellman prime in the specified `encoding`. + * If `encoding` is provided a string is + * returned; otherwise a `Buffer` is returned. + * @since v0.5.0 + * @param encoding The `encoding` of the return value. + */ + getPrime(): Buffer; + getPrime(encoding: BinaryToTextEncoding): string; + /** + * Returns the Diffie-Hellman generator in the specified `encoding`. + * If `encoding` is provided a string is + * returned; otherwise a `Buffer` is returned. + * @since v0.5.0 + * @param encoding The `encoding` of the return value. + */ + getGenerator(): Buffer; + getGenerator(encoding: BinaryToTextEncoding): string; + /** + * Returns the Diffie-Hellman public key in the specified `encoding`. + * If `encoding` is provided a + * string is returned; otherwise a `Buffer` is returned. + * @since v0.5.0 + * @param encoding The `encoding` of the return value. + */ + getPublicKey(): Buffer; + getPublicKey(encoding: BinaryToTextEncoding): string; + /** + * Returns the Diffie-Hellman private key in the specified `encoding`. + * If `encoding` is provided a + * string is returned; otherwise a `Buffer` is returned. + * @since v0.5.0 + * @param encoding The `encoding` of the return value. + */ + getPrivateKey(): Buffer; + getPrivateKey(encoding: BinaryToTextEncoding): string; + /** + * Sets the Diffie-Hellman public key. If the `encoding` argument is provided,`publicKey` is expected + * to be a string. If no `encoding` is provided, `publicKey` is expected + * to be a `Buffer`, `TypedArray`, or `DataView`. + * @since v0.5.0 + * @param encoding The `encoding` of the `publicKey` string. + */ + setPublicKey(publicKey: NodeJS.ArrayBufferView): void; + setPublicKey(publicKey: string, encoding: BufferEncoding): void; + /** + * Sets the Diffie-Hellman private key. If the `encoding` argument is provided,`privateKey` is expected + * to be a string. If no `encoding` is provided, `privateKey` is expected + * to be a `Buffer`, `TypedArray`, or `DataView`. + * @since v0.5.0 + * @param encoding The `encoding` of the `privateKey` string. + */ + setPrivateKey(privateKey: NodeJS.ArrayBufferView): void; + setPrivateKey(privateKey: string, encoding: BufferEncoding): void; + /** + * A bit field containing any warnings and/or errors resulting from a check + * performed during initialization of the `DiffieHellman` object. + * + * The following values are valid for this property (as defined in `constants`module): + * + * * `DH_CHECK_P_NOT_SAFE_PRIME` + * * `DH_CHECK_P_NOT_PRIME` + * * `DH_UNABLE_TO_CHECK_GENERATOR` + * * `DH_NOT_SUITABLE_GENERATOR` + * @since v0.11.12 + */ + verifyError: number; + } + /** + * The `DiffieHellmanGroup` class takes a well-known modp group as its argument. + * It works the same as `DiffieHellman`, except that it does not allow changing its keys after creation. + * In other words, it does not implement `setPublicKey()` or `setPrivateKey()` methods. + * + * ```js + * const { createDiffieHellmanGroup } = await import('node:crypto'); + * const dh = createDiffieHellmanGroup('modp1'); + * ``` + * The name (e.g. `'modp1'`) is taken from [RFC 2412](https://www.rfc-editor.org/rfc/rfc2412.txt) (modp1 and 2) and [RFC 3526](https://www.rfc-editor.org/rfc/rfc3526.txt): + * ```bash + * $ perl -ne 'print "$1\n" if /"(modp\d+)"/' src/node_crypto_groups.h + * modp1 # 768 bits + * modp2 # 1024 bits + * modp5 # 1536 bits + * modp14 # 2048 bits + * modp15 # etc. + * modp16 + * modp17 + * modp18 + * ``` + * @since v0.7.5 + */ + const DiffieHellmanGroup: DiffieHellmanGroupConstructor; + interface DiffieHellmanGroupConstructor { + new(name: string): DiffieHellmanGroup; + (name: string): DiffieHellmanGroup; + readonly prototype: DiffieHellmanGroup; + } + type DiffieHellmanGroup = Omit; + /** + * Creates a predefined `DiffieHellmanGroup` key exchange object. The + * supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in [RFC 2412](https://www.rfc-editor.org/rfc/rfc2412.txt), but see `Caveats`) and `'modp14'`, `'modp15'`,`'modp16'`, `'modp17'`, + * `'modp18'` (defined in [RFC 3526](https://www.rfc-editor.org/rfc/rfc3526.txt)). The + * returned object mimics the interface of objects created by {@link createDiffieHellman}, but will not allow changing + * the keys (with `diffieHellman.setPublicKey()`, for example). The + * advantage of using this method is that the parties do not have to + * generate nor exchange a group modulus beforehand, saving both processor + * and communication time. + * + * Example (obtaining a shared secret): + * + * ```js + * const { + * getDiffieHellman + * } = await import('crypto'); + * const alice = getDiffieHellman('modp14'); + * const bob = getDiffieHellman('modp14'); + * + * alice.generateKeys(); + * bob.generateKeys(); + * + * const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); + * const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); + * + * // aliceSecret and bobSecret should be the same + * console.log(aliceSecret === bobSecret); + * ``` + * @since v0.7.5 + */ + function getDiffieHellman(groupName: string): DiffieHellmanGroup; + /** + * An alias for {@link getDiffieHellman} + * @since v0.9.3 + */ + function createDiffieHellmanGroup(name: string): DiffieHellmanGroup; + /** + * Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2) + * implementation. A selected HMAC digest algorithm specified by `digest` is + * applied to derive a key of the requested byte length (`keylen`) from the`password`, `salt` and `iterations`. + * + * The supplied `callback` function is called with two arguments: `err` and`derivedKey`. If an error occurs while deriving the key, `err` will be set; + * otherwise `err` will be `null`. By default, the successfully generated`derivedKey` will be passed to the callback as a `Buffer`. An error will be + * thrown if any of the input arguments specify invalid values or types. + * + * If `digest` is `null`, `'sha1'` will be used. This behavior is deprecated, + * please specify a `digest` explicitly. + * + * The `iterations` argument must be a number set as high as possible. The + * higher the number of iterations, the more secure the derived key will be, + * but will take a longer amount of time to complete. + * + * The `salt` should be as unique as possible. It is recommended that a salt is + * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details. + * + * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`. + * + * ```js + * const { + * pbkdf2 + * } = await import('crypto'); + * + * pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => { + * if (err) throw err; + * console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' + * }); + * ``` + * + * The `crypto.DEFAULT_ENCODING` property can be used to change the way the`derivedKey` is passed to the callback. This property, however, has been + * deprecated and use should be avoided. + * + * ```js + * import crypto from 'crypto'; + * crypto.DEFAULT_ENCODING = 'hex'; + * crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, derivedKey) => { + * if (err) throw err; + * console.log(derivedKey); // '3745e48...aa39b34' + * }); + * ``` + * + * An array of supported digest functions can be retrieved using {@link getHashes}. + * + * This API uses libuv's threadpool, which can have surprising and + * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information. + * @since v0.5.5 + */ + function pbkdf2(password: BinaryLike, salt: BinaryLike, iterations: number, keylen: number, digest: string, callback: (err: Error | null, derivedKey: Buffer) => void): void; + /** + * Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2) + * implementation. A selected HMAC digest algorithm specified by `digest` is + * applied to derive a key of the requested byte length (`keylen`) from the`password`, `salt` and `iterations`. + * + * If an error occurs an `Error` will be thrown, otherwise the derived key will be + * returned as a `Buffer`. + * + * If `digest` is `null`, `'sha1'` will be used. This behavior is deprecated, + * please specify a `digest` explicitly. + * + * The `iterations` argument must be a number set as high as possible. The + * higher the number of iterations, the more secure the derived key will be, + * but will take a longer amount of time to complete. + * + * The `salt` should be as unique as possible. It is recommended that a salt is + * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details. + * + * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`. + * + * ```js + * const { + * pbkdf2Sync + * } = await import('crypto'); + * + * const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512'); + * console.log(key.toString('hex')); // '3745e48...08d59ae' + * ``` + * + * The `crypto.DEFAULT_ENCODING` property may be used to change the way the`derivedKey` is returned. This property, however, is deprecated and use + * should be avoided. + * + * ```js + * import crypto from 'crypto'; + * crypto.DEFAULT_ENCODING = 'hex'; + * const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512'); + * console.log(key); // '3745e48...aa39b34' + * ``` + * + * An array of supported digest functions can be retrieved using {@link getHashes}. + * @since v0.9.3 + */ + function pbkdf2Sync(password: BinaryLike, salt: BinaryLike, iterations: number, keylen: number, digest: string): Buffer; + /** + * Generates cryptographically strong pseudorandom data. The `size` argument + * is a number indicating the number of bytes to generate. + * + * If a `callback` function is provided, the bytes are generated asynchronously + * and the `callback` function is invoked with two arguments: `err` and `buf`. + * If an error occurs, `err` will be an `Error` object; otherwise it is `null`. The`buf` argument is a `Buffer` containing the generated bytes. + * + * ```js + * // Asynchronous + * const { + * randomBytes + * } = await import('crypto'); + * + * randomBytes(256, (err, buf) => { + * if (err) throw err; + * console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`); + * }); + * ``` + * + * If the `callback` function is not provided, the random bytes are generated + * synchronously and returned as a `Buffer`. An error will be thrown if + * there is a problem generating the bytes. + * + * ```js + * // Synchronous + * const { + * randomBytes + * } = await import('crypto'); + * + * const buf = randomBytes(256); + * console.log( + * `${buf.length} bytes of random data: ${buf.toString('hex')}`); + * ``` + * + * The `crypto.randomBytes()` method will not complete until there is + * sufficient entropy available. + * This should normally never take longer than a few milliseconds. The only time + * when generating the random bytes may conceivably block for a longer period of + * time is right after boot, when the whole system is still low on entropy. + * + * This API uses libuv's threadpool, which can have surprising and + * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information. + * + * The asynchronous version of `crypto.randomBytes()` is carried out in a single + * threadpool request. To minimize threadpool task length variation, partition + * large `randomBytes` requests when doing so as part of fulfilling a client + * request. + * @since v0.5.8 + * @param size The number of bytes to generate. The `size` must not be larger than `2**31 - 1`. + * @return if the `callback` function is not provided. + */ + function randomBytes(size: number): Buffer; + function randomBytes(size: number, callback: (err: Error | null, buf: Buffer) => void): void; + function pseudoRandomBytes(size: number): Buffer; + function pseudoRandomBytes(size: number, callback: (err: Error | null, buf: Buffer) => void): void; + /** + * Return a random integer `n` such that `min <= n < max`. This + * implementation avoids [modulo bias](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#Modulo_bias). + * + * The range (`max - min`) must be less than 248. `min` and `max` must + * be [safe integers](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isSafeInteger). + * + * If the `callback` function is not provided, the random integer is + * generated synchronously. + * + * ```js + * // Asynchronous + * const { + * randomInt + * } = await import('crypto'); + * + * randomInt(3, (err, n) => { + * if (err) throw err; + * console.log(`Random number chosen from (0, 1, 2): ${n}`); + * }); + * ``` + * + * ```js + * // Synchronous + * const { + * randomInt + * } = await import('crypto'); + * + * const n = randomInt(3); + * console.log(`Random number chosen from (0, 1, 2): ${n}`); + * ``` + * + * ```js + * // With `min` argument + * const { + * randomInt + * } = await import('crypto'); + * + * const n = randomInt(1, 7); + * console.log(`The dice rolled: ${n}`); + * ``` + * @since v14.10.0, v12.19.0 + * @param [min=0] Start of random range (inclusive). + * @param max End of random range (exclusive). + * @param callback `function(err, n) {}`. + */ + function randomInt(max: number): number; + function randomInt(min: number, max: number): number; + function randomInt(max: number, callback: (err: Error | null, value: number) => void): void; + function randomInt(min: number, max: number, callback: (err: Error | null, value: number) => void): void; + /** + * Synchronous version of {@link randomFill}. + * + * ```js + * import { Buffer } from 'buffer'; + * const { randomFillSync } = await import('crypto'); + * + * const buf = Buffer.alloc(10); + * console.log(randomFillSync(buf).toString('hex')); + * + * randomFillSync(buf, 5); + * console.log(buf.toString('hex')); + * + * // The above is equivalent to the following: + * randomFillSync(buf, 5, 5); + * console.log(buf.toString('hex')); + * ``` + * + * Any `ArrayBuffer`, `TypedArray` or `DataView` instance may be passed as`buffer`. + * + * ```js + * import { Buffer } from 'buffer'; + * const { randomFillSync } = await import('crypto'); + * + * const a = new Uint32Array(10); + * console.log(Buffer.from(randomFillSync(a).buffer, + * a.byteOffset, a.byteLength).toString('hex')); + * + * const b = new DataView(new ArrayBuffer(10)); + * console.log(Buffer.from(randomFillSync(b).buffer, + * b.byteOffset, b.byteLength).toString('hex')); + * + * const c = new ArrayBuffer(10); + * console.log(Buffer.from(randomFillSync(c)).toString('hex')); + * ``` + * @since v7.10.0, v6.13.0 + * @param buffer Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`. + * @param [offset=0] + * @param [size=buffer.length - offset] + * @return The object passed as `buffer` argument. + */ + function randomFillSync(buffer: T, offset?: number, size?: number): T; + /** + * This function is similar to {@link randomBytes} but requires the first + * argument to be a `Buffer` that will be filled. It also + * requires that a callback is passed in. + * + * If the `callback` function is not provided, an error will be thrown. + * + * ```js + * import { Buffer } from 'buffer'; + * const { randomFill } = await import('crypto'); + * + * const buf = Buffer.alloc(10); + * randomFill(buf, (err, buf) => { + * if (err) throw err; + * console.log(buf.toString('hex')); + * }); + * + * randomFill(buf, 5, (err, buf) => { + * if (err) throw err; + * console.log(buf.toString('hex')); + * }); + * + * // The above is equivalent to the following: + * randomFill(buf, 5, 5, (err, buf) => { + * if (err) throw err; + * console.log(buf.toString('hex')); + * }); + * ``` + * + * Any `ArrayBuffer`, `TypedArray`, or `DataView` instance may be passed as`buffer`. + * + * While this includes instances of `Float32Array` and `Float64Array`, this + * function should not be used to generate random floating-point numbers. The + * result may contain `+Infinity`, `-Infinity`, and `NaN`, and even if the array + * contains finite numbers only, they are not drawn from a uniform random + * distribution and have no meaningful lower or upper bounds. + * + * ```js + * import { Buffer } from 'buffer'; + * const { randomFill } = await import('crypto'); + * + * const a = new Uint32Array(10); + * randomFill(a, (err, buf) => { + * if (err) throw err; + * console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) + * .toString('hex')); + * }); + * + * const b = new DataView(new ArrayBuffer(10)); + * randomFill(b, (err, buf) => { + * if (err) throw err; + * console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) + * .toString('hex')); + * }); + * + * const c = new ArrayBuffer(10); + * randomFill(c, (err, buf) => { + * if (err) throw err; + * console.log(Buffer.from(buf).toString('hex')); + * }); + * ``` + * + * This API uses libuv's threadpool, which can have surprising and + * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information. + * + * The asynchronous version of `crypto.randomFill()` is carried out in a single + * threadpool request. To minimize threadpool task length variation, partition + * large `randomFill` requests when doing so as part of fulfilling a client + * request. + * @since v7.10.0, v6.13.0 + * @param buffer Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`. + * @param [offset=0] + * @param [size=buffer.length - offset] + * @param callback `function(err, buf) {}`. + */ + function randomFill(buffer: T, callback: (err: Error | null, buf: T) => void): void; + function randomFill(buffer: T, offset: number, callback: (err: Error | null, buf: T) => void): void; + function randomFill(buffer: T, offset: number, size: number, callback: (err: Error | null, buf: T) => void): void; + interface ScryptOptions { + cost?: number | undefined; + blockSize?: number | undefined; + parallelization?: number | undefined; + N?: number | undefined; + r?: number | undefined; + p?: number | undefined; + maxmem?: number | undefined; + } + /** + * Provides an asynchronous [scrypt](https://en.wikipedia.org/wiki/Scrypt) implementation. Scrypt is a password-based + * key derivation function that is designed to be expensive computationally and + * memory-wise in order to make brute-force attacks unrewarding. + * + * The `salt` should be as unique as possible. It is recommended that a salt is + * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details. + * + * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`. + * + * The `callback` function is called with two arguments: `err` and `derivedKey`.`err` is an exception object when key derivation fails, otherwise `err` is`null`. `derivedKey` is passed to the + * callback as a `Buffer`. + * + * An exception is thrown when any of the input arguments specify invalid values + * or types. + * + * ```js + * const { + * scrypt + * } = await import('crypto'); + * + * // Using the factory defaults. + * scrypt('password', 'salt', 64, (err, derivedKey) => { + * if (err) throw err; + * console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' + * }); + * // Using a custom N parameter. Must be a power of two. + * scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => { + * if (err) throw err; + * console.log(derivedKey.toString('hex')); // '3745e48...aa39b34' + * }); + * ``` + * @since v10.5.0 + */ + function scrypt(password: BinaryLike, salt: BinaryLike, keylen: number, callback: (err: Error | null, derivedKey: Buffer) => void): void; + function scrypt(password: BinaryLike, salt: BinaryLike, keylen: number, options: ScryptOptions, callback: (err: Error | null, derivedKey: Buffer) => void): void; + /** + * Provides a synchronous [scrypt](https://en.wikipedia.org/wiki/Scrypt) implementation. Scrypt is a password-based + * key derivation function that is designed to be expensive computationally and + * memory-wise in order to make brute-force attacks unrewarding. + * + * The `salt` should be as unique as possible. It is recommended that a salt is + * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details. + * + * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`. + * + * An exception is thrown when key derivation fails, otherwise the derived key is + * returned as a `Buffer`. + * + * An exception is thrown when any of the input arguments specify invalid values + * or types. + * + * ```js + * const { + * scryptSync + * } = await import('crypto'); + * // Using the factory defaults. + * + * const key1 = scryptSync('password', 'salt', 64); + * console.log(key1.toString('hex')); // '3745e48...08d59ae' + * // Using a custom N parameter. Must be a power of two. + * const key2 = scryptSync('password', 'salt', 64, { N: 1024 }); + * console.log(key2.toString('hex')); // '3745e48...aa39b34' + * ``` + * @since v10.5.0 + */ + function scryptSync(password: BinaryLike, salt: BinaryLike, keylen: number, options?: ScryptOptions): Buffer; + interface RsaPublicKey { + key: KeyLike; + padding?: number | undefined; + } + interface RsaPrivateKey { + key: KeyLike; + passphrase?: string | undefined; + /** + * @default 'sha1' + */ + oaepHash?: string | undefined; + oaepLabel?: NodeJS.TypedArray | undefined; + padding?: number | undefined; + } + /** + * Encrypts the content of `buffer` with `key` and returns a new `Buffer` with encrypted content. The returned data can be decrypted using + * the corresponding private key, for example using {@link privateDecrypt}. + * + * If `key` is not a `KeyObject`, this function behaves as if`key` had been passed to {@link createPublicKey}. If it is an + * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_OAEP_PADDING`. + * + * Because RSA public keys can be derived from private keys, a private key may + * be passed instead of a public key. + * @since v0.11.14 + */ + function publicEncrypt(key: RsaPublicKey | RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer; + /** + * Decrypts `buffer` with `key`.`buffer` was previously encrypted using + * the corresponding private key, for example using {@link privateEncrypt}. + * + * If `key` is not a `KeyObject`, this function behaves as if`key` had been passed to {@link createPublicKey}. If it is an + * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_PADDING`. + * + * Because RSA public keys can be derived from private keys, a private key may + * be passed instead of a public key. + * @since v1.1.0 + */ + function publicDecrypt(key: RsaPublicKey | RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer; + /** + * Decrypts `buffer` with `privateKey`. `buffer` was previously encrypted using + * the corresponding public key, for example using {@link publicEncrypt}. + * + * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an + * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_OAEP_PADDING`. + * @since v0.11.14 + */ + function privateDecrypt(privateKey: RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer; + /** + * Encrypts `buffer` with `privateKey`. The returned data can be decrypted using + * the corresponding public key, for example using {@link publicDecrypt}. + * + * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an + * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_PADDING`. + * @since v1.1.0 + */ + function privateEncrypt(privateKey: RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer; + /** + * ```js + * const { + * getCiphers + * } = await import('crypto'); + * + * console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...] + * ``` + * @since v0.9.3 + * @return An array with the names of the supported cipher algorithms. + */ + function getCiphers(): string[]; + /** + * ```js + * const { + * getCurves + * } = await import('crypto'); + * + * console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...] + * ``` + * @since v2.3.0 + * @return An array with the names of the supported elliptic curves. + */ + function getCurves(): string[]; + /** + * @since v10.0.0 + * @return `1` if and only if a FIPS compliant crypto provider is currently in use, `0` otherwise. A future semver-major release may change the return type of this API to a {boolean}. + */ + function getFips(): 1 | 0; + /** + * Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build. Throws an error if FIPS mode is not available. + * @since v10.0.0 + * @param bool `true` to enable FIPS mode. + */ + function setFips(bool: boolean): void; + /** + * ```js + * const { + * getHashes + * } = await import('crypto'); + * + * console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...] + * ``` + * @since v0.9.3 + * @return An array of the names of the supported hash algorithms, such as `'RSA-SHA256'`. Hash algorithms are also called "digest" algorithms. + */ + function getHashes(): string[]; + /** + * The `ECDH` class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH) + * key exchanges. + * + * Instances of the `ECDH` class can be created using the {@link createECDH} function. + * + * ```js + * import assert from 'assert'; + * + * const { + * createECDH + * } = await import('crypto'); + * + * // Generate Alice's keys... + * const alice = createECDH('secp521r1'); + * const aliceKey = alice.generateKeys(); + * + * // Generate Bob's keys... + * const bob = createECDH('secp521r1'); + * const bobKey = bob.generateKeys(); + * + * // Exchange and generate the secret... + * const aliceSecret = alice.computeSecret(bobKey); + * const bobSecret = bob.computeSecret(aliceKey); + * + * assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); + * // OK + * ``` + * @since v0.11.14 + */ + class ECDH { + private constructor(); + /** + * Converts the EC Diffie-Hellman public key specified by `key` and `curve` to the + * format specified by `format`. The `format` argument specifies point encoding + * and can be `'compressed'`, `'uncompressed'` or `'hybrid'`. The supplied key is + * interpreted using the specified `inputEncoding`, and the returned key is encoded + * using the specified `outputEncoding`. + * + * Use {@link getCurves} to obtain a list of available curve names. + * On recent OpenSSL releases, `openssl ecparam -list_curves` will also display + * the name and description of each available elliptic curve. + * + * If `format` is not specified the point will be returned in `'uncompressed'`format. + * + * If the `inputEncoding` is not provided, `key` is expected to be a `Buffer`,`TypedArray`, or `DataView`. + * + * Example (uncompressing a key): + * + * ```js + * const { + * createECDH, + * ECDH + * } = await import('crypto'); + * + * const ecdh = createECDH('secp256k1'); + * ecdh.generateKeys(); + * + * const compressedKey = ecdh.getPublicKey('hex', 'compressed'); + * + * const uncompressedKey = ECDH.convertKey(compressedKey, + * 'secp256k1', + * 'hex', + * 'hex', + * 'uncompressed'); + * + * // The converted key and the uncompressed public key should be the same + * console.log(uncompressedKey === ecdh.getPublicKey('hex')); + * ``` + * @since v10.0.0 + * @param inputEncoding The `encoding` of the `key` string. + * @param outputEncoding The `encoding` of the return value. + * @param [format='uncompressed'] + */ + static convertKey( + key: BinaryLike, + curve: string, + inputEncoding?: BinaryToTextEncoding, + outputEncoding?: 'latin1' | 'hex' | 'base64' | 'base64url', + format?: 'uncompressed' | 'compressed' | 'hybrid' + ): Buffer | string; + /** + * Generates private and public EC Diffie-Hellman key values, and returns + * the public key in the specified `format` and `encoding`. This key should be + * transferred to the other party. + * + * The `format` argument specifies point encoding and can be `'compressed'` or`'uncompressed'`. If `format` is not specified, the point will be returned in`'uncompressed'` format. + * + * If `encoding` is provided a string is returned; otherwise a `Buffer` is returned. + * @since v0.11.14 + * @param encoding The `encoding` of the return value. + * @param [format='uncompressed'] + */ + generateKeys(): Buffer; + generateKeys(encoding: BinaryToTextEncoding, format?: ECDHKeyFormat): string; + /** + * Computes the shared secret using `otherPublicKey` as the other + * party's public key and returns the computed shared secret. The supplied + * key is interpreted using specified `inputEncoding`, and the returned secret + * is encoded using the specified `outputEncoding`. + * If the `inputEncoding` is not + * provided, `otherPublicKey` is expected to be a `Buffer`, `TypedArray`, or`DataView`. + * + * If `outputEncoding` is given a string will be returned; otherwise a `Buffer` is returned. + * + * `ecdh.computeSecret` will throw an`ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY` error when `otherPublicKey`lies outside of the elliptic curve. Since `otherPublicKey` is + * usually supplied from a remote user over an insecure network, + * be sure to handle this exception accordingly. + * @since v0.11.14 + * @param inputEncoding The `encoding` of the `otherPublicKey` string. + * @param outputEncoding The `encoding` of the return value. + */ + computeSecret(otherPublicKey: NodeJS.ArrayBufferView): Buffer; + computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding): Buffer; + computeSecret(otherPublicKey: NodeJS.ArrayBufferView, outputEncoding: BinaryToTextEncoding): string; + computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding: BinaryToTextEncoding): string; + /** + * If `encoding` is specified, a string is returned; otherwise a `Buffer` is + * returned. + * @since v0.11.14 + * @param encoding The `encoding` of the return value. + * @return The EC Diffie-Hellman in the specified `encoding`. + */ + getPrivateKey(): Buffer; + getPrivateKey(encoding: BinaryToTextEncoding): string; + /** + * The `format` argument specifies point encoding and can be `'compressed'` or`'uncompressed'`. If `format` is not specified the point will be returned in`'uncompressed'` format. + * + * If `encoding` is specified, a string is returned; otherwise a `Buffer` is + * returned. + * @since v0.11.14 + * @param [encoding] The `encoding` of the return value. + * @param [format='uncompressed'] + * @return The EC Diffie-Hellman public key in the specified `encoding` and `format`. + */ + getPublicKey(encoding?: null, format?: ECDHKeyFormat): Buffer; + getPublicKey(encoding: BinaryToTextEncoding, format?: ECDHKeyFormat): string; + /** + * Sets the EC Diffie-Hellman private key. + * If `encoding` is provided, `privateKey` is expected + * to be a string; otherwise `privateKey` is expected to be a `Buffer`,`TypedArray`, or `DataView`. + * + * If `privateKey` is not valid for the curve specified when the `ECDH` object was + * created, an error is thrown. Upon setting the private key, the associated + * public point (key) is also generated and set in the `ECDH` object. + * @since v0.11.14 + * @param encoding The `encoding` of the `privateKey` string. + */ + setPrivateKey(privateKey: NodeJS.ArrayBufferView): void; + setPrivateKey(privateKey: string, encoding: BinaryToTextEncoding): void; + } + /** + * Creates an Elliptic Curve Diffie-Hellman (`ECDH`) key exchange object using a + * predefined curve specified by the `curveName` string. Use {@link getCurves} to obtain a list of available curve names. On recent + * OpenSSL releases, `openssl ecparam -list_curves` will also display the name + * and description of each available elliptic curve. + * @since v0.11.14 + */ + function createECDH(curveName: string): ECDH; + /** + * This function is based on a constant-time algorithm. + * Returns true if `a` is equal to `b`, without leaking timing information that + * would allow an attacker to guess one of the values. This is suitable for + * comparing HMAC digests or secret values like authentication cookies or [capability urls](https://www.w3.org/TR/capability-urls/). + * + * `a` and `b` must both be `Buffer`s, `TypedArray`s, or `DataView`s, and they + * must have the same byte length. An error is thrown if `a` and `b` have + * different byte lengths. + * + * If at least one of `a` and `b` is a `TypedArray` with more than one byte per + * entry, such as `Uint16Array`, the result will be computed using the platform + * byte order. + * + * Use of `crypto.timingSafeEqual` does not guarantee that the _surrounding_ code + * is timing-safe. Care should be taken to ensure that the surrounding code does + * not introduce timing vulnerabilities. + * @since v6.6.0 + */ + function timingSafeEqual(a: NodeJS.ArrayBufferView, b: NodeJS.ArrayBufferView): boolean; + /** @deprecated since v10.0.0 */ + const DEFAULT_ENCODING: BufferEncoding; + type KeyType = 'rsa' | 'rsa-pss' | 'dsa' | 'ec' | 'ed25519' | 'ed448' | 'x25519' | 'x448'; + type KeyFormat = 'pem' | 'der'; + interface BasePrivateKeyEncodingOptions { + format: T; + cipher?: string | undefined; + passphrase?: string | undefined; + } + interface KeyPairKeyObjectResult { + publicKey: KeyObject; + privateKey: KeyObject; + } + interface ED25519KeyPairKeyObjectOptions {} + interface ED448KeyPairKeyObjectOptions {} + interface X25519KeyPairKeyObjectOptions {} + interface X448KeyPairKeyObjectOptions {} + interface ECKeyPairKeyObjectOptions { + /** + * Name of the curve to use + */ + namedCurve: string; + } + interface RSAKeyPairKeyObjectOptions { + /** + * Key size in bits + */ + modulusLength: number; + /** + * Public exponent + * @default 0x10001 + */ + publicExponent?: number | undefined; + } + interface RSAPSSKeyPairKeyObjectOptions { + /** + * Key size in bits + */ + modulusLength: number; + /** + * Public exponent + * @default 0x10001 + */ + publicExponent?: number | undefined; + /** + * Name of the message digest + */ + hashAlgorithm?: string; + /** + * Name of the message digest used by MGF1 + */ + mgf1HashAlgorithm?: string; + /** + * Minimal salt length in bytes + */ + saltLength?: string; + } + interface DSAKeyPairKeyObjectOptions { + /** + * Key size in bits + */ + modulusLength: number; + /** + * Size of q in bits + */ + divisorLength: number; + } + interface RSAKeyPairOptions { + /** + * Key size in bits + */ + modulusLength: number; + /** + * Public exponent + * @default 0x10001 + */ + publicExponent?: number | undefined; + publicKeyEncoding: { + type: 'pkcs1' | 'spki'; + format: PubF; + }; + privateKeyEncoding: BasePrivateKeyEncodingOptions & { + type: 'pkcs1' | 'pkcs8'; + }; + } + interface RSAPSSKeyPairOptions { + /** + * Key size in bits + */ + modulusLength: number; + /** + * Public exponent + * @default 0x10001 + */ + publicExponent?: number | undefined; + /** + * Name of the message digest + */ + hashAlgorithm?: string; + /** + * Name of the message digest used by MGF1 + */ + mgf1HashAlgorithm?: string; + /** + * Minimal salt length in bytes + */ + saltLength?: string; + publicKeyEncoding: { + type: 'spki'; + format: PubF; + }; + privateKeyEncoding: BasePrivateKeyEncodingOptions & { + type: 'pkcs8'; + }; + } + interface DSAKeyPairOptions { + /** + * Key size in bits + */ + modulusLength: number; + /** + * Size of q in bits + */ + divisorLength: number; + publicKeyEncoding: { + type: 'spki'; + format: PubF; + }; + privateKeyEncoding: BasePrivateKeyEncodingOptions & { + type: 'pkcs8'; + }; + } + interface ECKeyPairOptions { + /** + * Name of the curve to use. + */ + namedCurve: string; + publicKeyEncoding: { + type: 'pkcs1' | 'spki'; + format: PubF; + }; + privateKeyEncoding: BasePrivateKeyEncodingOptions & { + type: 'sec1' | 'pkcs8'; + }; + } + interface ED25519KeyPairOptions { + publicKeyEncoding: { + type: 'spki'; + format: PubF; + }; + privateKeyEncoding: BasePrivateKeyEncodingOptions & { + type: 'pkcs8'; + }; + } + interface ED448KeyPairOptions { + publicKeyEncoding: { + type: 'spki'; + format: PubF; + }; + privateKeyEncoding: BasePrivateKeyEncodingOptions & { + type: 'pkcs8'; + }; + } + interface X25519KeyPairOptions { + publicKeyEncoding: { + type: 'spki'; + format: PubF; + }; + privateKeyEncoding: BasePrivateKeyEncodingOptions & { + type: 'pkcs8'; + }; + } + interface X448KeyPairOptions { + publicKeyEncoding: { + type: 'spki'; + format: PubF; + }; + privateKeyEncoding: BasePrivateKeyEncodingOptions & { + type: 'pkcs8'; + }; + } + interface KeyPairSyncResult { + publicKey: T1; + privateKey: T2; + } + /** + * Generates a new asymmetric key pair of the given `type`. RSA, RSA-PSS, DSA, EC, + * Ed25519, Ed448, X25519, X448, and DH are currently supported. + * + * If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function + * behaves as if `keyObject.export()` had been called on its result. Otherwise, + * the respective part of the key is returned as a `KeyObject`. + * + * When encoding public keys, it is recommended to use `'spki'`. When encoding + * private keys, it is recommended to use `'pkcs8'` with a strong passphrase, + * and to keep the passphrase confidential. + * + * ```js + * const { + * generateKeyPairSync + * } = await import('crypto'); + * + * const { + * publicKey, + * privateKey, + * } = generateKeyPairSync('rsa', { + * modulusLength: 4096, + * publicKeyEncoding: { + * type: 'spki', + * format: 'pem' + * }, + * privateKeyEncoding: { + * type: 'pkcs8', + * format: 'pem', + * cipher: 'aes-256-cbc', + * passphrase: 'top secret' + * } + * }); + * ``` + * + * The return value `{ publicKey, privateKey }` represents the generated key pair. + * When PEM encoding was selected, the respective key will be a string, otherwise + * it will be a buffer containing the data encoded as DER. + * @since v10.12.0 + * @param type Must be `'rsa'`, `'rsa-pss'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`. + */ + function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'pem', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'der', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'der', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'rsa', options: RSAKeyPairKeyObjectOptions): KeyPairKeyObjectResult; + function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions): KeyPairKeyObjectResult; + function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'pem', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'der', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'der', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'dsa', options: DSAKeyPairKeyObjectOptions): KeyPairKeyObjectResult; + function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'pem', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'der', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'der', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ec', options: ECKeyPairKeyObjectOptions): KeyPairKeyObjectResult; + function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ed25519', options?: ED25519KeyPairKeyObjectOptions): KeyPairKeyObjectResult; + function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'pem', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'der', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'der', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'ed448', options?: ED448KeyPairKeyObjectOptions): KeyPairKeyObjectResult; + function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'pem', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'der', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'der', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'x25519', options?: X25519KeyPairKeyObjectOptions): KeyPairKeyObjectResult; + function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'pem', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'der', 'pem'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'der', 'der'>): KeyPairSyncResult; + function generateKeyPairSync(type: 'x448', options?: X448KeyPairKeyObjectOptions): KeyPairKeyObjectResult; + /** + * Generates a new asymmetric key pair of the given `type`. RSA, RSA-PSS, DSA, EC, + * Ed25519, Ed448, X25519, X448, and DH are currently supported. + * + * If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function + * behaves as if `keyObject.export()` had been called on its result. Otherwise, + * the respective part of the key is returned as a `KeyObject`. + * + * It is recommended to encode public keys as `'spki'` and private keys as`'pkcs8'` with encryption for long-term storage: + * + * ```js + * const { + * generateKeyPair + * } = await import('crypto'); + * + * generateKeyPair('rsa', { + * modulusLength: 4096, + * publicKeyEncoding: { + * type: 'spki', + * format: 'pem' + * }, + * privateKeyEncoding: { + * type: 'pkcs8', + * format: 'pem', + * cipher: 'aes-256-cbc', + * passphrase: 'top secret' + * } + * }, (err, publicKey, privateKey) => { + * // Handle errors and use the generated key pair. + * }); + * ``` + * + * On completion, `callback` will be called with `err` set to `undefined` and`publicKey` / `privateKey` representing the generated key pair. + * + * If this method is invoked as its `util.promisify()` ed version, it returns + * a `Promise` for an `Object` with `publicKey` and `privateKey` properties. + * @since v10.12.0 + * @param type Must be `'rsa'`, `'rsa-pss'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`. + */ + function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void; + function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void; + function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'rsa', options: RSAKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void; + function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void; + function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void; + function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void; + function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void; + function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void; + function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'dsa', options: DSAKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void; + function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void; + function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void; + function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'ec', options: ECKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void; + function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void; + function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void; + function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'ed25519', options: ED25519KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void; + function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void; + function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void; + function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'ed448', options: ED448KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void; + function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void; + function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void; + function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'x25519', options: X25519KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void; + function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void; + function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void; + function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void; + function generateKeyPair(type: 'x448', options: X448KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void; + namespace generateKeyPair { + function __promisify__( + type: 'rsa', + options: RSAKeyPairOptions<'pem', 'pem'> + ): Promise<{ + publicKey: string; + privateKey: string; + }>; + function __promisify__( + type: 'rsa', + options: RSAKeyPairOptions<'pem', 'der'> + ): Promise<{ + publicKey: string; + privateKey: Buffer; + }>; + function __promisify__( + type: 'rsa', + options: RSAKeyPairOptions<'der', 'pem'> + ): Promise<{ + publicKey: Buffer; + privateKey: string; + }>; + function __promisify__( + type: 'rsa', + options: RSAKeyPairOptions<'der', 'der'> + ): Promise<{ + publicKey: Buffer; + privateKey: Buffer; + }>; + function __promisify__(type: 'rsa', options: RSAKeyPairKeyObjectOptions): Promise; + function __promisify__( + type: 'rsa-pss', + options: RSAPSSKeyPairOptions<'pem', 'pem'> + ): Promise<{ + publicKey: string; + privateKey: string; + }>; + function __promisify__( + type: 'rsa-pss', + options: RSAPSSKeyPairOptions<'pem', 'der'> + ): Promise<{ + publicKey: string; + privateKey: Buffer; + }>; + function __promisify__( + type: 'rsa-pss', + options: RSAPSSKeyPairOptions<'der', 'pem'> + ): Promise<{ + publicKey: Buffer; + privateKey: string; + }>; + function __promisify__( + type: 'rsa-pss', + options: RSAPSSKeyPairOptions<'der', 'der'> + ): Promise<{ + publicKey: Buffer; + privateKey: Buffer; + }>; + function __promisify__(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions): Promise; + function __promisify__( + type: 'dsa', + options: DSAKeyPairOptions<'pem', 'pem'> + ): Promise<{ + publicKey: string; + privateKey: string; + }>; + function __promisify__( + type: 'dsa', + options: DSAKeyPairOptions<'pem', 'der'> + ): Promise<{ + publicKey: string; + privateKey: Buffer; + }>; + function __promisify__( + type: 'dsa', + options: DSAKeyPairOptions<'der', 'pem'> + ): Promise<{ + publicKey: Buffer; + privateKey: string; + }>; + function __promisify__( + type: 'dsa', + options: DSAKeyPairOptions<'der', 'der'> + ): Promise<{ + publicKey: Buffer; + privateKey: Buffer; + }>; + function __promisify__(type: 'dsa', options: DSAKeyPairKeyObjectOptions): Promise; + function __promisify__( + type: 'ec', + options: ECKeyPairOptions<'pem', 'pem'> + ): Promise<{ + publicKey: string; + privateKey: string; + }>; + function __promisify__( + type: 'ec', + options: ECKeyPairOptions<'pem', 'der'> + ): Promise<{ + publicKey: string; + privateKey: Buffer; + }>; + function __promisify__( + type: 'ec', + options: ECKeyPairOptions<'der', 'pem'> + ): Promise<{ + publicKey: Buffer; + privateKey: string; + }>; + function __promisify__( + type: 'ec', + options: ECKeyPairOptions<'der', 'der'> + ): Promise<{ + publicKey: Buffer; + privateKey: Buffer; + }>; + function __promisify__(type: 'ec', options: ECKeyPairKeyObjectOptions): Promise; + function __promisify__( + type: 'ed25519', + options: ED25519KeyPairOptions<'pem', 'pem'> + ): Promise<{ + publicKey: string; + privateKey: string; + }>; + function __promisify__( + type: 'ed25519', + options: ED25519KeyPairOptions<'pem', 'der'> + ): Promise<{ + publicKey: string; + privateKey: Buffer; + }>; + function __promisify__( + type: 'ed25519', + options: ED25519KeyPairOptions<'der', 'pem'> + ): Promise<{ + publicKey: Buffer; + privateKey: string; + }>; + function __promisify__( + type: 'ed25519', + options: ED25519KeyPairOptions<'der', 'der'> + ): Promise<{ + publicKey: Buffer; + privateKey: Buffer; + }>; + function __promisify__(type: 'ed25519', options?: ED25519KeyPairKeyObjectOptions): Promise; + function __promisify__( + type: 'ed448', + options: ED448KeyPairOptions<'pem', 'pem'> + ): Promise<{ + publicKey: string; + privateKey: string; + }>; + function __promisify__( + type: 'ed448', + options: ED448KeyPairOptions<'pem', 'der'> + ): Promise<{ + publicKey: string; + privateKey: Buffer; + }>; + function __promisify__( + type: 'ed448', + options: ED448KeyPairOptions<'der', 'pem'> + ): Promise<{ + publicKey: Buffer; + privateKey: string; + }>; + function __promisify__( + type: 'ed448', + options: ED448KeyPairOptions<'der', 'der'> + ): Promise<{ + publicKey: Buffer; + privateKey: Buffer; + }>; + function __promisify__(type: 'ed448', options?: ED448KeyPairKeyObjectOptions): Promise; + function __promisify__( + type: 'x25519', + options: X25519KeyPairOptions<'pem', 'pem'> + ): Promise<{ + publicKey: string; + privateKey: string; + }>; + function __promisify__( + type: 'x25519', + options: X25519KeyPairOptions<'pem', 'der'> + ): Promise<{ + publicKey: string; + privateKey: Buffer; + }>; + function __promisify__( + type: 'x25519', + options: X25519KeyPairOptions<'der', 'pem'> + ): Promise<{ + publicKey: Buffer; + privateKey: string; + }>; + function __promisify__( + type: 'x25519', + options: X25519KeyPairOptions<'der', 'der'> + ): Promise<{ + publicKey: Buffer; + privateKey: Buffer; + }>; + function __promisify__(type: 'x25519', options?: X25519KeyPairKeyObjectOptions): Promise; + function __promisify__( + type: 'x448', + options: X448KeyPairOptions<'pem', 'pem'> + ): Promise<{ + publicKey: string; + privateKey: string; + }>; + function __promisify__( + type: 'x448', + options: X448KeyPairOptions<'pem', 'der'> + ): Promise<{ + publicKey: string; + privateKey: Buffer; + }>; + function __promisify__( + type: 'x448', + options: X448KeyPairOptions<'der', 'pem'> + ): Promise<{ + publicKey: Buffer; + privateKey: string; + }>; + function __promisify__( + type: 'x448', + options: X448KeyPairOptions<'der', 'der'> + ): Promise<{ + publicKey: Buffer; + privateKey: Buffer; + }>; + function __promisify__(type: 'x448', options?: X448KeyPairKeyObjectOptions): Promise; + } + /** + * Calculates and returns the signature for `data` using the given private key and + * algorithm. If `algorithm` is `null` or `undefined`, then the algorithm is + * dependent upon the key type (especially Ed25519 and Ed448). + * + * If `key` is not a `KeyObject`, this function behaves as if `key` had been + * passed to {@link createPrivateKey}. If it is an object, the following + * additional properties can be passed: + * + * If the `callback` function is provided this function uses libuv's threadpool. + * @since v12.0.0 + */ + function sign(algorithm: string | null | undefined, data: NodeJS.ArrayBufferView, key: KeyLike | SignKeyObjectInput | SignPrivateKeyInput): Buffer; + function sign( + algorithm: string | null | undefined, + data: NodeJS.ArrayBufferView, + key: KeyLike | SignKeyObjectInput | SignPrivateKeyInput, + callback: (error: Error | null, data: Buffer) => void + ): void; + /** + * Verifies the given signature for `data` using the given key and algorithm. If`algorithm` is `null` or `undefined`, then the algorithm is dependent upon the + * key type (especially Ed25519 and Ed448). + * + * If `key` is not a `KeyObject`, this function behaves as if `key` had been + * passed to {@link createPublicKey}. If it is an object, the following + * additional properties can be passed: + * + * The `signature` argument is the previously calculated signature for the `data`. + * + * Because public keys can be derived from private keys, a private key or a public + * key may be passed for `key`. + * + * If the `callback` function is provided this function uses libuv's threadpool. + * @since v12.0.0 + */ + function verify(algorithm: string | null | undefined, data: NodeJS.ArrayBufferView, key: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: NodeJS.ArrayBufferView): boolean; + function verify( + algorithm: string | null | undefined, + data: NodeJS.ArrayBufferView, + key: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, + signature: NodeJS.ArrayBufferView, + callback: (error: Error | null, result: boolean) => void + ): void; + /** + * Computes the Diffie-Hellman secret based on a `privateKey` and a `publicKey`. + * Both keys must have the same `asymmetricKeyType`, which must be one of `'dh'`(for Diffie-Hellman), `'ec'` (for ECDH), `'x448'`, or `'x25519'` (for ECDH-ES). + * @since v13.9.0, v12.17.0 + */ + function diffieHellman(options: { privateKey: KeyObject; publicKey: KeyObject }): Buffer; + type CipherMode = 'cbc' | 'ccm' | 'cfb' | 'ctr' | 'ecb' | 'gcm' | 'ocb' | 'ofb' | 'stream' | 'wrap' | 'xts'; + interface CipherInfoOptions { + /** + * A test key length. + */ + keyLength?: number | undefined; + /** + * A test IV length. + */ + ivLength?: number | undefined; + } + interface CipherInfo { + /** + * The name of the cipher. + */ + name: string; + /** + * The nid of the cipher. + */ + nid: number; + /** + * The block size of the cipher in bytes. + * This property is omitted when mode is 'stream'. + */ + blockSize?: number | undefined; + /** + * The expected or default initialization vector length in bytes. + * This property is omitted if the cipher does not use an initialization vector. + */ + ivLength?: number | undefined; + /** + * The expected or default key length in bytes. + */ + keyLength: number; + /** + * The cipher mode. + */ + mode: CipherMode; + } + /** + * Returns information about a given cipher. + * + * Some ciphers accept variable length keys and initialization vectors. By default, + * the `crypto.getCipherInfo()` method will return the default values for these + * ciphers. To test if a given key length or iv length is acceptable for given + * cipher, use the `keyLength` and `ivLength` options. If the given values are + * unacceptable, `undefined` will be returned. + * @since v15.0.0 + * @param nameOrNid The name or nid of the cipher to query. + */ + function getCipherInfo(nameOrNid: string | number, options?: CipherInfoOptions): CipherInfo | undefined; + /** + * HKDF is a simple key derivation function defined in RFC 5869\. The given `ikm`,`salt` and `info` are used with the `digest` to derive a key of `keylen` bytes. + * + * The supplied `callback` function is called with two arguments: `err` and`derivedKey`. If an errors occurs while deriving the key, `err` will be set; + * otherwise `err` will be `null`. The successfully generated `derivedKey` will + * be passed to the callback as an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). An error will be thrown if any + * of the input arguments specify invalid values or types. + * + * ```js + * import { Buffer } from 'buffer'; + * const { + * hkdf + * } = await import('crypto'); + * + * hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => { + * if (err) throw err; + * console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653' + * }); + * ``` + * @since v15.0.0 + * @param digest The digest algorithm to use. + * @param ikm The input keying material. It must be at least one byte in length. + * @param salt The salt value. Must be provided but can be zero-length. + * @param info Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes. + * @param keylen The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512` + * generates 64-byte hashes, making the maximum HKDF output 16320 bytes). + */ + function hkdf(digest: string, irm: BinaryLike | KeyObject, salt: BinaryLike, info: BinaryLike, keylen: number, callback: (err: Error | null, derivedKey: ArrayBuffer) => void): void; + /** + * Provides a synchronous HKDF key derivation function as defined in RFC 5869\. The + * given `ikm`, `salt` and `info` are used with the `digest` to derive a key of`keylen` bytes. + * + * The successfully generated `derivedKey` will be returned as an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). + * + * An error will be thrown if any of the input arguments specify invalid values or + * types, or if the derived key cannot be generated. + * + * ```js + * import { Buffer } from 'buffer'; + * const { + * hkdfSync + * } = await import('crypto'); + * + * const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64); + * console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653' + * ``` + * @since v15.0.0 + * @param digest The digest algorithm to use. + * @param ikm The input keying material. It must be at least one byte in length. + * @param salt The salt value. Must be provided but can be zero-length. + * @param info Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes. + * @param keylen The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512` + * generates 64-byte hashes, making the maximum HKDF output 16320 bytes). + */ + function hkdfSync(digest: string, ikm: BinaryLike | KeyObject, salt: BinaryLike, info: BinaryLike, keylen: number): ArrayBuffer; + interface SecureHeapUsage { + /** + * The total allocated secure heap size as specified using the `--secure-heap=n` command-line flag. + */ + total: number; + /** + * The minimum allocation from the secure heap as specified using the `--secure-heap-min` command-line flag. + */ + min: number; + /** + * The total number of bytes currently allocated from the secure heap. + */ + used: number; + /** + * The calculated ratio of `used` to `total` allocated bytes. + */ + utilization: number; + } + /** + * @since v15.6.0 + */ + function secureHeapUsed(): SecureHeapUsage; + interface RandomUUIDOptions { + /** + * By default, to improve performance, + * Node.js will pre-emptively generate and persistently cache enough + * random data to generate up to 128 random UUIDs. To generate a UUID + * without using the cache, set `disableEntropyCache` to `true`. + * + * @default `false` + */ + disableEntropyCache?: boolean | undefined; + } + /** + * Generates a random [RFC 4122](https://www.rfc-editor.org/rfc/rfc4122.txt) version 4 UUID. The UUID is generated using a + * cryptographic pseudorandom number generator. + * @since v15.6.0, v14.17.0 + */ + function randomUUID(options?: RandomUUIDOptions): string; + interface X509CheckOptions { + /** + * @default 'always' + */ + subject: 'always' | 'never'; + /** + * @default true + */ + wildcards: boolean; + /** + * @default true + */ + partialWildcards: boolean; + /** + * @default false + */ + multiLabelWildcards: boolean; + /** + * @default false + */ + singleLabelSubdomains: boolean; + } + /** + * Encapsulates an X509 certificate and provides read-only access to + * its information. + * + * ```js + * const { X509Certificate } = await import('crypto'); + * + * const x509 = new X509Certificate('{... pem encoded cert ...}'); + * + * console.log(x509.subject); + * ``` + * @since v15.6.0 + */ + class X509Certificate { + /** + * Will be \`true\` if this is a Certificate Authority (CA) certificate. + * @since v15.6.0 + */ + readonly ca: boolean; + /** + * The SHA-1 fingerprint of this certificate. + * + * Because SHA-1 is cryptographically broken and because the security of SHA-1 is + * significantly worse than that of algorithms that are commonly used to sign + * certificates, consider using `x509.fingerprint256` instead. + * @since v15.6.0 + */ + readonly fingerprint: string; + /** + * The SHA-256 fingerprint of this certificate. + * @since v15.6.0 + */ + readonly fingerprint256: string; + /** + * The SHA-512 fingerprint of this certificate. + * @since v16.14.0 + */ + readonly fingerprint512: string; + /** + * The complete subject of this certificate. + * @since v15.6.0 + */ + readonly subject: string; + /** + * The subject alternative name specified for this certificate or `undefined` + * if not available. + * @since v15.6.0 + */ + readonly subjectAltName: string | undefined; + /** + * The information access content of this certificate or `undefined` if not + * available. + * @since v15.6.0 + */ + readonly infoAccess: string | undefined; + /** + * An array detailing the key usages for this certificate. + * @since v15.6.0 + */ + readonly keyUsage: string[]; + /** + * The issuer identification included in this certificate. + * @since v15.6.0 + */ + readonly issuer: string; + /** + * The issuer certificate or `undefined` if the issuer certificate is not + * available. + * @since v15.9.0 + */ + readonly issuerCertificate?: X509Certificate | undefined; + /** + * The public key `KeyObject` for this certificate. + * @since v15.6.0 + */ + readonly publicKey: KeyObject; + /** + * A `Buffer` containing the DER encoding of this certificate. + * @since v15.6.0 + */ + readonly raw: Buffer; + /** + * The serial number of this certificate. + * + * Serial numbers are assigned by certificate authorities and do not uniquely + * identify certificates. Consider using `x509.fingerprint256` as a unique + * identifier instead. + * @since v15.6.0 + */ + readonly serialNumber: string; + /** + * The date/time from which this certificate is considered valid. + * @since v15.6.0 + */ + readonly validFrom: string; + /** + * The date/time until which this certificate is considered valid. + * @since v15.6.0 + */ + readonly validTo: string; + constructor(buffer: BinaryLike); + /** + * Checks whether the certificate matches the given email address. + * + * If the `'subject'` option is undefined or set to `'default'`, the certificate + * subject is only considered if the subject alternative name extension either does + * not exist or does not contain any email addresses. + * + * If the `'subject'` option is set to `'always'` and if the subject alternative + * name extension either does not exist or does not contain a matching email + * address, the certificate subject is considered. + * + * If the `'subject'` option is set to `'never'`, the certificate subject is never + * considered, even if the certificate contains no subject alternative names. + * @since v15.6.0 + * @return Returns `email` if the certificate matches, `undefined` if it does not. + */ + checkEmail(email: string, options?: Pick): string | undefined; + /** + * Checks whether the certificate matches the given host name. + * + * If the certificate matches the given host name, the matching subject name is + * returned. The returned name might be an exact match (e.g., `foo.example.com`) + * or it might contain wildcards (e.g., `*.example.com`). Because host name + * comparisons are case-insensitive, the returned subject name might also differ + * from the given `name` in capitalization. + * + * If the `'subject'` option is undefined or set to `'default'`, the certificate + * subject is only considered if the subject alternative name extension either does + * not exist or does not contain any DNS names. This behavior is consistent with [RFC 2818](https://www.rfc-editor.org/rfc/rfc2818.txt) ("HTTP Over TLS"). + * + * If the `'subject'` option is set to `'always'` and if the subject alternative + * name extension either does not exist or does not contain a matching DNS name, + * the certificate subject is considered. + * + * If the `'subject'` option is set to `'never'`, the certificate subject is never + * considered, even if the certificate contains no subject alternative names. + * @since v15.6.0 + * @return Returns a subject name that matches `name`, or `undefined` if no subject name matches `name`. + */ + checkHost(name: string, options?: X509CheckOptions): string | undefined; + /** + * Checks whether the certificate matches the given IP address (IPv4 or IPv6). + * + * Only [RFC 5280](https://www.rfc-editor.org/rfc/rfc5280.txt) `iPAddress` subject alternative names are considered, and they + * must match the given `ip` address exactly. Other subject alternative names as + * well as the subject field of the certificate are ignored. + * @since v15.6.0 + * @return Returns `ip` if the certificate matches, `undefined` if it does not. + */ + checkIP(ip: string): string | undefined; + /** + * Checks whether this certificate was issued by the given `otherCert`. + * @since v15.6.0 + */ + checkIssued(otherCert: X509Certificate): boolean; + /** + * Checks whether the public key for this certificate is consistent with + * the given private key. + * @since v15.6.0 + * @param privateKey A private key. + */ + checkPrivateKey(privateKey: KeyObject): boolean; + /** + * There is no standard JSON encoding for X509 certificates. The`toJSON()` method returns a string containing the PEM encoded + * certificate. + * @since v15.6.0 + */ + toJSON(): string; + /** + * Returns information about this certificate using the legacy `certificate object` encoding. + * @since v15.6.0 + */ + toLegacyObject(): PeerCertificate; + /** + * Returns the PEM-encoded certificate. + * @since v15.6.0 + */ + toString(): string; + /** + * Verifies that this certificate was signed by the given public key. + * Does not perform any other validation checks on the certificate. + * @since v15.6.0 + * @param publicKey A public key. + */ + verify(publicKey: KeyObject): boolean; + } + type LargeNumberLike = NodeJS.ArrayBufferView | SharedArrayBuffer | ArrayBuffer | bigint; + interface GeneratePrimeOptions { + add?: LargeNumberLike | undefined; + rem?: LargeNumberLike | undefined; + /** + * @default false + */ + safe?: boolean | undefined; + bigint?: boolean | undefined; + } + interface GeneratePrimeOptionsBigInt extends GeneratePrimeOptions { + bigint: true; + } + interface GeneratePrimeOptionsArrayBuffer extends GeneratePrimeOptions { + bigint?: false | undefined; + } + /** + * Generates a pseudorandom prime of `size` bits. + * + * If `options.safe` is `true`, the prime will be a safe prime -- that is,`(prime - 1) / 2` will also be a prime. + * + * The `options.add` and `options.rem` parameters can be used to enforce additional + * requirements, e.g., for Diffie-Hellman: + * + * * If `options.add` and `options.rem` are both set, the prime will satisfy the + * condition that `prime % add = rem`. + * * If only `options.add` is set and `options.safe` is not `true`, the prime will + * satisfy the condition that `prime % add = 1`. + * * If only `options.add` is set and `options.safe` is set to `true`, the prime + * will instead satisfy the condition that `prime % add = 3`. This is necessary + * because `prime % add = 1` for `options.add > 2` would contradict the condition + * enforced by `options.safe`. + * * `options.rem` is ignored if `options.add` is not given. + * + * Both `options.add` and `options.rem` must be encoded as big-endian sequences + * if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or`DataView`. + * + * By default, the prime is encoded as a big-endian sequence of octets + * in an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). If the `bigint` option is `true`, then a + * [bigint](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt) is provided. + * @since v15.8.0 + * @param size The size (in bits) of the prime to generate. + */ + function generatePrime(size: number, callback: (err: Error | null, prime: ArrayBuffer) => void): void; + function generatePrime(size: number, options: GeneratePrimeOptionsBigInt, callback: (err: Error | null, prime: bigint) => void): void; + function generatePrime(size: number, options: GeneratePrimeOptionsArrayBuffer, callback: (err: Error | null, prime: ArrayBuffer) => void): void; + function generatePrime(size: number, options: GeneratePrimeOptions, callback: (err: Error | null, prime: ArrayBuffer | bigint) => void): void; + /** + * Generates a pseudorandom prime of `size` bits. + * + * If `options.safe` is `true`, the prime will be a safe prime -- that is,`(prime - 1) / 2` will also be a prime. + * + * The `options.add` and `options.rem` parameters can be used to enforce additional + * requirements, e.g., for Diffie-Hellman: + * + * * If `options.add` and `options.rem` are both set, the prime will satisfy the + * condition that `prime % add = rem`. + * * If only `options.add` is set and `options.safe` is not `true`, the prime will + * satisfy the condition that `prime % add = 1`. + * * If only `options.add` is set and `options.safe` is set to `true`, the prime + * will instead satisfy the condition that `prime % add = 3`. This is necessary + * because `prime % add = 1` for `options.add > 2` would contradict the condition + * enforced by `options.safe`. + * * `options.rem` is ignored if `options.add` is not given. + * + * Both `options.add` and `options.rem` must be encoded as big-endian sequences + * if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or`DataView`. + * + * By default, the prime is encoded as a big-endian sequence of octets + * in an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). If the `bigint` option is `true`, then a + * [bigint](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt) is provided. + * @since v15.8.0 + * @param size The size (in bits) of the prime to generate. + */ + function generatePrimeSync(size: number): ArrayBuffer; + function generatePrimeSync(size: number, options: GeneratePrimeOptionsBigInt): bigint; + function generatePrimeSync(size: number, options: GeneratePrimeOptionsArrayBuffer): ArrayBuffer; + function generatePrimeSync(size: number, options: GeneratePrimeOptions): ArrayBuffer | bigint; + interface CheckPrimeOptions { + /** + * The number of Miller-Rabin probabilistic primality iterations to perform. + * When the value is 0 (zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. + * Care must be used when selecting a number of checks. + * Refer to the OpenSSL documentation for the BN_is_prime_ex function nchecks options for more details. + * + * @default 0 + */ + checks?: number | undefined; + } + /** + * Checks the primality of the `candidate`. + * @since v15.8.0 + * @param candidate A possible prime encoded as a sequence of big endian octets of arbitrary length. + */ + function checkPrime(value: LargeNumberLike, callback: (err: Error | null, result: boolean) => void): void; + function checkPrime(value: LargeNumberLike, options: CheckPrimeOptions, callback: (err: Error | null, result: boolean) => void): void; + /** + * Checks the primality of the `candidate`. + * @since v15.8.0 + * @param candidate A possible prime encoded as a sequence of big endian octets of arbitrary length. + * @return `true` if the candidate is a prime with an error probability less than `0.25 ** options.checks`. + */ + function checkPrimeSync(candidate: LargeNumberLike, options?: CheckPrimeOptions): boolean; + /** + * Load and set the `engine` for some or all OpenSSL functions (selected by flags). + * + * `engine` could be either an id or a path to the engine's shared library. + * + * The optional `flags` argument uses `ENGINE_METHOD_ALL` by default. + * The `flags` is a bit field taking one of or a mix of the following flags (defined in `crypto.constants`): + * + * - `crypto.constants.ENGINE_METHOD_RSA` + * - `crypto.constants.ENGINE_METHOD_DSA` + * - `crypto.constants.ENGINE_METHOD_DH` + * - `crypto.constants.ENGINE_METHOD_RAND` + * - `crypto.constants.ENGINE_METHOD_EC` + * - `crypto.constants.ENGINE_METHOD_CIPHERS` + * - `crypto.constants.ENGINE_METHOD_DIGESTS` + * - `crypto.constants.ENGINE_METHOD_PKEY_METHS` + * - `crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS` + * - `crypto.constants.ENGINE_METHOD_ALL` + * - `crypto.constants.ENGINE_METHOD_NONE` + * + * The flags below are deprecated in OpenSSL-1.1.0. + * + * - `crypto.constants.ENGINE_METHOD_ECDH` + * - `crypto.constants.ENGINE_METHOD_ECDSA` + * - `crypto.constants.ENGINE_METHOD_STORE` + * @since v0.11.11 + * @param [flags=crypto.constants.ENGINE_METHOD_ALL] + */ + function setEngine(engine: string, flags?: number): void; + /** + * A convenient alias for `crypto.webcrypto.getRandomValues()`. + * This implementation is not compliant with the Web Crypto spec, + * to write web-compatible code use `crypto.webcrypto.getRandomValues()` instead. + * @since v17.4.0 + * @returns Returns `typedArray`. + */ + function getRandomValues(typedArray: T): T; + /** + * A convenient alias for `crypto.webcrypto.subtle`. + * @since v17.4.0 + */ + const subtle: webcrypto.SubtleCrypto; + /** + * An implementation of the Web Crypto API standard. + * + * See the {@link https://nodejs.org/docs/latest/api/webcrypto.html Web Crypto API documentation} for details. + * @since v15.0.0 + */ + const webcrypto: webcrypto.Crypto; + namespace webcrypto { + type BufferSource = ArrayBufferView | ArrayBuffer; + type KeyFormat = 'jwk' | 'pkcs8' | 'raw' | 'spki'; + type KeyType = 'private' | 'public' | 'secret'; + type KeyUsage = 'decrypt' | 'deriveBits' | 'deriveKey' | 'encrypt' | 'sign' | 'unwrapKey' | 'verify' | 'wrapKey'; + type AlgorithmIdentifier = Algorithm | string; + type HashAlgorithmIdentifier = AlgorithmIdentifier; + type NamedCurve = string; + type BigInteger = Uint8Array; + interface AesCbcParams extends Algorithm { + iv: BufferSource; + } + interface AesCtrParams extends Algorithm { + counter: BufferSource; + length: number; + } + interface AesDerivedKeyParams extends Algorithm { + length: number; + } + interface AesGcmParams extends Algorithm { + additionalData?: BufferSource; + iv: BufferSource; + tagLength?: number; + } + interface AesKeyAlgorithm extends KeyAlgorithm { + length: number; + } + interface AesKeyGenParams extends Algorithm { + length: number; + } + interface Algorithm { + name: string; + } + interface EcKeyAlgorithm extends KeyAlgorithm { + namedCurve: NamedCurve; + } + interface EcKeyGenParams extends Algorithm { + namedCurve: NamedCurve; + } + interface EcKeyImportParams extends Algorithm { + namedCurve: NamedCurve; + } + interface EcdhKeyDeriveParams extends Algorithm { + public: CryptoKey; + } + interface EcdsaParams extends Algorithm { + hash: HashAlgorithmIdentifier; + } + interface Ed448Params extends Algorithm { + context?: BufferSource; + } + interface HkdfParams extends Algorithm { + hash: HashAlgorithmIdentifier; + info: BufferSource; + salt: BufferSource; + } + interface HmacImportParams extends Algorithm { + hash: HashAlgorithmIdentifier; + length?: number; + } + interface HmacKeyAlgorithm extends KeyAlgorithm { + hash: KeyAlgorithm; + length: number; + } + interface HmacKeyGenParams extends Algorithm { + hash: HashAlgorithmIdentifier; + length?: number; + } + interface JsonWebKey { + alg?: string; + crv?: string; + d?: string; + dp?: string; + dq?: string; + e?: string; + ext?: boolean; + k?: string; + key_ops?: string[]; + kty?: string; + n?: string; + oth?: RsaOtherPrimesInfo[]; + p?: string; + q?: string; + qi?: string; + use?: string; + x?: string; + y?: string; + } + interface KeyAlgorithm { + name: string; + } + interface Pbkdf2Params extends Algorithm { + hash: HashAlgorithmIdentifier; + iterations: number; + salt: BufferSource; + } + interface RsaHashedImportParams extends Algorithm { + hash: HashAlgorithmIdentifier; + } + interface RsaHashedKeyAlgorithm extends RsaKeyAlgorithm { + hash: KeyAlgorithm; + } + interface RsaHashedKeyGenParams extends RsaKeyGenParams { + hash: HashAlgorithmIdentifier; + } + interface RsaKeyAlgorithm extends KeyAlgorithm { + modulusLength: number; + publicExponent: BigInteger; + } + interface RsaKeyGenParams extends Algorithm { + modulusLength: number; + publicExponent: BigInteger; + } + interface RsaOaepParams extends Algorithm { + label?: BufferSource; + } + interface RsaOtherPrimesInfo { + d?: string; + r?: string; + t?: string; + } + interface RsaPssParams extends Algorithm { + saltLength: number; + } + /** + * Calling `require('node:crypto').webcrypto` returns an instance of the `Crypto` class. + * `Crypto` is a singleton that provides access to the remainder of the crypto API. + * @since v15.0.0 + */ + interface Crypto { + /** + * Provides access to the `SubtleCrypto` API. + * @since v15.0.0 + */ + readonly subtle: SubtleCrypto; + /** + * Generates cryptographically strong random values. + * The given `typedArray` is filled with random values, and a reference to `typedArray` is returned. + * + * The given `typedArray` must be an integer-based instance of {@link NodeJS.TypedArray}, i.e. `Float32Array` and `Float64Array` are not accepted. + * + * An error will be thrown if the given `typedArray` is larger than 65,536 bytes. + * @since v15.0.0 + */ + getRandomValues>(typedArray: T): T; + /** + * Generates a random {@link https://www.rfc-editor.org/rfc/rfc4122.txt RFC 4122} version 4 UUID. + * The UUID is generated using a cryptographic pseudorandom number generator. + * @since v16.7.0 + */ + randomUUID(): string; + CryptoKey: CryptoKeyConstructor; + } + // This constructor throws ILLEGAL_CONSTRUCTOR so it should not be newable. + interface CryptoKeyConstructor { + /** Illegal constructor */ + (_: { readonly _: unique symbol }): never; // Allows instanceof to work but not be callable by the user. + readonly length: 0; + readonly name: 'CryptoKey'; + readonly prototype: CryptoKey; + } + /** + * @since v15.0.0 + */ + interface CryptoKey { + /** + * An object detailing the algorithm for which the key can be used along with additional algorithm-specific parameters. + * @since v15.0.0 + */ + readonly algorithm: KeyAlgorithm; + /** + * When `true`, the {@link CryptoKey} can be extracted using either `subtleCrypto.exportKey()` or `subtleCrypto.wrapKey()`. + * @since v15.0.0 + */ + readonly extractable: boolean; + /** + * A string identifying whether the key is a symmetric (`'secret'`) or asymmetric (`'private'` or `'public'`) key. + * @since v15.0.0 + */ + readonly type: KeyType; + /** + * An array of strings identifying the operations for which the key may be used. + * + * The possible usages are: + * - `'encrypt'` - The key may be used to encrypt data. + * - `'decrypt'` - The key may be used to decrypt data. + * - `'sign'` - The key may be used to generate digital signatures. + * - `'verify'` - The key may be used to verify digital signatures. + * - `'deriveKey'` - The key may be used to derive a new key. + * - `'deriveBits'` - The key may be used to derive bits. + * - `'wrapKey'` - The key may be used to wrap another key. + * - `'unwrapKey'` - The key may be used to unwrap another key. + * + * Valid key usages depend on the key algorithm (identified by `cryptokey.algorithm.name`). + * @since v15.0.0 + */ + readonly usages: KeyUsage[]; + } + /** + * The `CryptoKeyPair` is a simple dictionary object with `publicKey` and `privateKey` properties, representing an asymmetric key pair. + * @since v15.0.0 + */ + interface CryptoKeyPair { + /** + * A {@link CryptoKey} whose type will be `'private'`. + * @since v15.0.0 + */ + privateKey: CryptoKey; + /** + * A {@link CryptoKey} whose type will be `'public'`. + * @since v15.0.0 + */ + publicKey: CryptoKey; + } + /** + * @since v15.0.0 + */ + interface SubtleCrypto { + /** + * Using the method and parameters specified in `algorithm` and the keying material provided by `key`, + * `subtle.decrypt()` attempts to decipher the provided `data`. If successful, + * the returned promise will be resolved with an `` containing the plaintext result. + * + * The algorithms currently supported include: + * + * - `'RSA-OAEP'` + * - `'AES-CTR'` + * - `'AES-CBC'` + * - `'AES-GCM'` + * @since v15.0.0 + */ + decrypt(algorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams, key: CryptoKey, data: BufferSource): Promise; + /** + * Using the method and parameters specified in `algorithm` and the keying material provided by `baseKey`, + * `subtle.deriveBits()` attempts to generate `length` bits. + * The Node.js implementation requires that `length` is a multiple of `8`. + * If successful, the returned promise will be resolved with an `` containing the generated data. + * + * The algorithms currently supported include: + * + * - `'ECDH'` + * - `'X25519'` + * - `'X448'` + * - `'HKDF'` + * - `'PBKDF2'` + * @since v15.0.0 + */ + deriveBits(algorithm: AlgorithmIdentifier | EcdhKeyDeriveParams | HkdfParams | Pbkdf2Params, baseKey: CryptoKey, length: number): Promise; + /** + * Using the method and parameters specified in `algorithm`, and the keying material provided by `baseKey`, + * `subtle.deriveKey()` attempts to generate a new ` based on the method and parameters in `derivedKeyAlgorithm`. + * + * Calling `subtle.deriveKey()` is equivalent to calling `subtle.deriveBits()` to generate raw keying material, + * then passing the result into the `subtle.importKey()` method using the `deriveKeyAlgorithm`, `extractable`, and `keyUsages` parameters as input. + * + * The algorithms currently supported include: + * + * - `'ECDH'` + * - `'X25519'` + * - `'X448'` + * - `'HKDF'` + * - `'PBKDF2'` + * @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}. + * @since v15.0.0 + */ + deriveKey( + algorithm: AlgorithmIdentifier | EcdhKeyDeriveParams | HkdfParams | Pbkdf2Params, + baseKey: CryptoKey, + derivedKeyAlgorithm: AlgorithmIdentifier | AesDerivedKeyParams | HmacImportParams | HkdfParams | Pbkdf2Params, + extractable: boolean, + keyUsages: ReadonlyArray + ): Promise; + /** + * Using the method identified by `algorithm`, `subtle.digest()` attempts to generate a digest of `data`. + * If successful, the returned promise is resolved with an `` containing the computed digest. + * + * If `algorithm` is provided as a ``, it must be one of: + * + * - `'SHA-1'` + * - `'SHA-256'` + * - `'SHA-384'` + * - `'SHA-512'` + * + * If `algorithm` is provided as an ``, it must have a `name` property whose value is one of the above. + * @since v15.0.0 + */ + digest(algorithm: AlgorithmIdentifier, data: BufferSource): Promise; + /** + * Using the method and parameters specified by `algorithm` and the keying material provided by `key`, + * `subtle.encrypt()` attempts to encipher `data`. If successful, + * the returned promise is resolved with an `` containing the encrypted result. + * + * The algorithms currently supported include: + * + * - `'RSA-OAEP'` + * - `'AES-CTR'` + * - `'AES-CBC'` + * - `'AES-GCM'` + * @since v15.0.0 + */ + encrypt(algorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams, key: CryptoKey, data: BufferSource): Promise; + /** + * Exports the given key into the specified format, if supported. + * + * If the `` is not extractable, the returned promise will reject. + * + * When `format` is either `'pkcs8'` or `'spki'` and the export is successful, + * the returned promise will be resolved with an `` containing the exported key data. + * + * When `format` is `'jwk'` and the export is successful, the returned promise will be resolved with a + * JavaScript object conforming to the {@link https://tools.ietf.org/html/rfc7517 JSON Web Key} specification. + * @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`. + * @returns `` containing ``. + * @since v15.0.0 + */ + exportKey(format: 'jwk', key: CryptoKey): Promise; + exportKey(format: Exclude, key: CryptoKey): Promise; + /** + * Using the method and parameters provided in `algorithm`, + * `subtle.generateKey()` attempts to generate new keying material. + * Depending the method used, the method may generate either a single `` or a ``. + * + * The `` (public and private key) generating algorithms supported include: + * + * - `'RSASSA-PKCS1-v1_5'` + * - `'RSA-PSS'` + * - `'RSA-OAEP'` + * - `'ECDSA'` + * - `'Ed25519'` + * - `'Ed448'` + * - `'ECDH'` + * - `'X25519'` + * - `'X448'` + * The `` (secret key) generating algorithms supported include: + * + * - `'HMAC'` + * - `'AES-CTR'` + * - `'AES-CBC'` + * - `'AES-GCM'` + * - `'AES-KW'` + * @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}. + * @since v15.0.0 + */ + generateKey(algorithm: RsaHashedKeyGenParams | EcKeyGenParams, extractable: boolean, keyUsages: ReadonlyArray): Promise; + generateKey(algorithm: AesKeyGenParams | HmacKeyGenParams | Pbkdf2Params, extractable: boolean, keyUsages: ReadonlyArray): Promise; + generateKey(algorithm: AlgorithmIdentifier, extractable: boolean, keyUsages: KeyUsage[]): Promise; + /** + * The `subtle.importKey()` method attempts to interpret the provided `keyData` as the given `format` + * to create a `` instance using the provided `algorithm`, `extractable`, and `keyUsages` arguments. + * If the import is successful, the returned promise will be resolved with the created ``. + * + * If importing a `'PBKDF2'` key, `extractable` must be `false`. + * @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`. + * @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}. + * @since v15.0.0 + */ + importKey( + format: 'jwk', + keyData: JsonWebKey, + algorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm, + extractable: boolean, + keyUsages: ReadonlyArray + ): Promise; + importKey( + format: Exclude, + keyData: BufferSource, + algorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm, + extractable: boolean, + keyUsages: KeyUsage[] + ): Promise; + /** + * Using the method and parameters given by `algorithm` and the keying material provided by `key`, + * `subtle.sign()` attempts to generate a cryptographic signature of `data`. If successful, + * the returned promise is resolved with an `` containing the generated signature. + * + * The algorithms currently supported include: + * + * - `'RSASSA-PKCS1-v1_5'` + * - `'RSA-PSS'` + * - `'ECDSA'` + * - `'Ed25519'` + * - `'Ed448'` + * - `'HMAC'` + * @since v15.0.0 + */ + sign(algorithm: AlgorithmIdentifier | RsaPssParams | EcdsaParams | Ed448Params, key: CryptoKey, data: BufferSource): Promise; + /** + * In cryptography, "wrapping a key" refers to exporting and then encrypting the keying material. + * The `subtle.unwrapKey()` method attempts to decrypt a wrapped key and create a `` instance. + * It is equivalent to calling `subtle.decrypt()` first on the encrypted key data (using the `wrappedKey`, `unwrapAlgo`, and `unwrappingKey` arguments as input) + * then passing the results in to the `subtle.importKey()` method using the `unwrappedKeyAlgo`, `extractable`, and `keyUsages` arguments as inputs. + * If successful, the returned promise is resolved with a `` object. + * + * The wrapping algorithms currently supported include: + * + * - `'RSA-OAEP'` + * - `'AES-CTR'` + * - `'AES-CBC'` + * - `'AES-GCM'` + * - `'AES-KW'` + * + * The unwrapped key algorithms supported include: + * + * - `'RSASSA-PKCS1-v1_5'` + * - `'RSA-PSS'` + * - `'RSA-OAEP'` + * - `'ECDSA'` + * - `'Ed25519'` + * - `'Ed448'` + * - `'ECDH'` + * - `'X25519'` + * - `'X448'` + * - `'HMAC'` + * - `'AES-CTR'` + * - `'AES-CBC'` + * - `'AES-GCM'` + * - `'AES-KW'` + * @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`. + * @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}. + * @since v15.0.0 + */ + unwrapKey( + format: KeyFormat, + wrappedKey: BufferSource, + unwrappingKey: CryptoKey, + unwrapAlgorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams, + unwrappedKeyAlgorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm, + extractable: boolean, + keyUsages: KeyUsage[] + ): Promise; + /** + * Using the method and parameters given in `algorithm` and the keying material provided by `key`, + * `subtle.verify()` attempts to verify that `signature` is a valid cryptographic signature of `data`. + * The returned promise is resolved with either `true` or `false`. + * + * The algorithms currently supported include: + * + * - `'RSASSA-PKCS1-v1_5'` + * - `'RSA-PSS'` + * - `'ECDSA'` + * - `'Ed25519'` + * - `'Ed448'` + * - `'HMAC'` + * @since v15.0.0 + */ + verify(algorithm: AlgorithmIdentifier | RsaPssParams | EcdsaParams | Ed448Params, key: CryptoKey, signature: BufferSource, data: BufferSource): Promise; + /** + * In cryptography, "wrapping a key" refers to exporting and then encrypting the keying material. + * The `subtle.wrapKey()` method exports the keying material into the format identified by `format`, + * then encrypts it using the method and parameters specified by `wrapAlgo` and the keying material provided by `wrappingKey`. + * It is the equivalent to calling `subtle.exportKey()` using `format` and `key` as the arguments, + * then passing the result to the `subtle.encrypt()` method using `wrappingKey` and `wrapAlgo` as inputs. + * If successful, the returned promise will be resolved with an `` containing the encrypted key data. + * + * The wrapping algorithms currently supported include: + * + * - `'RSA-OAEP'` + * - `'AES-CTR'` + * - `'AES-CBC'` + * - `'AES-GCM'` + * - `'AES-KW'` + * @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`. + * @since v15.0.0 + */ + wrapKey(format: KeyFormat, key: CryptoKey, wrappingKey: CryptoKey, wrapAlgorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams): Promise; + } + } +} +declare module 'node:crypto' { + export * from 'crypto'; +}