import requests import tensorflow as tf import pandas as pd import numpy as np from operator import add from functools import reduce from keras.models import load_model import random # configure GPUs for gpu in tf.config.list_physical_devices('GPU'): tf.config.experimental.set_memory_growth(gpu, enable=True) if len(tf.config.list_physical_devices('GPU')) > 0: tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU') ntmap = {'A': (1, 0, 0, 0), 'C': (0, 1, 0, 0), 'G': (0, 0, 1, 0), 'T': (0, 0, 0, 1) } def get_seqcode(seq): return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape( (1, len(seq), -1)) from keras.models import load_model class DCModelOntar: def __init__(self, ontar_model_dir, is_reg=False): self.model = load_model(ontar_model_dir) def ontar_predict(self, x, channel_first=True): if channel_first: x = x.transpose([0, 2, 3, 1]) yp = self.model.predict(x) return yp.ravel() # Function to predict on-target efficiency and format output def format_prediction_output(gRNAs, model_path): dcModel = DCModelOntar(model_path) formatted_data = [] for gRNA in gRNAs: # Encode the gRNA sequence encoded_seq = get_seqcode(gRNA[0]).reshape(-1,4,1,23) # Predict on-target efficiency using the model prediction = dcModel.ontar_predict(encoded_seq) # Format output chr = gRNA[1] start = gRNA[2] end = gRNA[3] strand = gRNA[4] formatted_data.append([chr, start, end, strand, gRNA[0], prediction[0]]) return formatted_data def fetch_ensembl_transcripts(gene_symbol): url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json" response = requests.get(url) if response.status_code == 200: gene_data = response.json() if 'Transcript' in gene_data: return gene_data['Transcript'] else: print("No transcripts found for gene:", gene_symbol) return None else: print(f"Error fetching gene data from Ensembl: {response.text}") return None def fetch_ensembl_sequence(transcript_id): url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json" response = requests.get(url) if response.status_code == 200: sequence_data = response.json() if 'seq' in sequence_data: return sequence_data['seq'] else: print("No sequence found for transcript:", transcript_id) return None else: print(f"Error fetching sequence data from Ensembl: {response.text}") return None def find_crispr_targets(sequence, chr, start, strand, pam="NGG", target_length=20): targets = [] len_sequence = len(sequence) for i in range(len_sequence - len(pam) + 1): if sequence[i + 1:i + 3] == pam[1:]: if i >= target_length: target_seq = sequence[i - target_length:i + 3] tar_start = start + i - target_length tar_end = start + i + 3 targets.append([target_seq, chr, tar_start, tar_end, strand]) return targets def process_gene(gene_symbol, model_path): transcripts = fetch_ensembl_transcripts(gene_symbol) all_data = [] if transcripts: for transcript in transcripts: transcript_id = transcript['id'] gene_sequence = fetch_ensembl_sequence(transcript_id) if gene_sequence: gRNA_sites = find_crispr_targets(gene_sequence) if gRNA_sites: formatted_data = format_prediction_output(gRNA_sites, transcript_id, model_path) all_data.extend(formatted_data) return all_data # Function to save results as CSV def save_to_csv(data, filename="crispr_results.csv"): df = pd.DataFrame(data, columns=["Gene ID", "Start Pos", "End Pos", "Strand", "gRNA", "Prediction"]) df.to_csv(filename, index=False)