import tensorflow as tf from keras import regularizers from keras.layers import Input, Dense, Dropout, Activation, Conv1D from keras.layers import GlobalAveragePooling1D, AveragePooling1D from keras.layers import Bidirectional, LSTM from keras import Model from keras.metrics import MeanSquaredError import pandas as pd import numpy as np import requests from functools import reduce from operator import add import tabulate from difflib import SequenceMatcher import cyvcf2 import parasail import re ntmap = {'A': (1, 0, 0, 0), 'C': (0, 1, 0, 0), 'G': (0, 0, 1, 0), 'T': (0, 0, 0, 1) } def get_seqcode(seq): return np.array(reduce(add, map(lambda c: ntmap[c], seq.upper()))).reshape((1, len(seq), -1)) def BiLSTM_model(input_shape): input = Input(shape=input_shape) conv1 = Conv1D(128, 5, activation="relu")(input) pool1 = AveragePooling1D(2)(conv1) drop1 = Dropout(0.1)(pool1) conv2 = Conv1D(128, 5, activation="relu")(drop1) pool2 = AveragePooling1D(2)(conv2) drop2 = Dropout(0.1)(pool2) lstm1 = Bidirectional(LSTM(128, dropout=0.1, activation='tanh', return_sequences=True, kernel_regularizer=regularizers.l2(1e-4)))(drop2) avgpool = GlobalAveragePooling1D()(lstm1) dense1 = Dense(128, kernel_regularizer=regularizers.l2(1e-4), bias_regularizer=regularizers.l2(1e-4), activation="relu")(avgpool) drop3 = Dropout(0.1)(dense1) dense2 = Dense(32, kernel_regularizer=regularizers.l2(1e-4), bias_regularizer=regularizers.l2(1e-4), activation="relu")(drop3) drop4 = Dropout(0.1)(dense2) dense3 = Dense(32, kernel_regularizer=regularizers.l2(1e-4), bias_regularizer=regularizers.l2(1e-4), activation="relu")(drop4) drop5 = Dropout(0.1)(dense3) output = Dense(1, activation="linear")(drop5) model = Model(inputs=[input], outputs=[output]) return model def fetch_ensembl_transcripts(gene_symbol): url = f"https://rest.ensembl.org/lookup/symbol/homo_sapiens/{gene_symbol}?expand=1;content-type=application/json" response = requests.get(url) if response.status_code == 200: gene_data = response.json() if 'Transcript' in gene_data: return gene_data['Transcript'] else: print("No transcripts found for gene:", gene_symbol) return None else: print(f"Error fetching gene data from Ensembl: {response.text}") return None def fetch_ensembl_sequence(transcript_id): url = f"https://rest.ensembl.org/sequence/id/{transcript_id}?content-type=application/json" response = requests.get(url) if response.status_code == 200: sequence_data = response.json() if 'seq' in sequence_data: return sequence_data['seq'] else: print("No sequence found for transcript:", transcript_id) return None else: print(f"Error fetching sequence data from Ensembl: {response.text}") return None def apply_mutation(ref_sequence, offset, ref, alt): """ Apply a single mutation to the sequence. """ if len(ref) == len(alt) and alt != "*": # SNP mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+len(alt):] elif len(ref) < len(alt): # Insertion mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+1:] elif len(ref) == len(alt) and alt == "*": # Deletion mutated_seq = ref_sequence[:offset] + ref_sequence[offset+1:] elif len(ref) > len(alt) and alt != "*": # Deletion mutated_seq = ref_sequence[:offset] + alt + ref_sequence[offset+len(ref):] elif len(ref) > len(alt) and alt == "*": # Deletion mutated_seq = ref_sequence[:offset] + ref_sequence[offset+len(ref):] return mutated_seq def construct_combinations(sequence, mutations): """ Construct all combinations of mutations. mutations is a list of tuples (position, ref, [alts]) """ if not mutations: return [sequence] # Take the first mutation and recursively construct combinations for the rest first_mutation = mutations[0] rest_mutations = mutations[1:] offset, ref, alts = first_mutation sequences = [] for alt in alts: mutated_sequence = apply_mutation(sequence, offset, ref, alt) sequences.extend(construct_combinations(mutated_sequence, rest_mutations)) return sequences def needleman_wunsch_alignment(query_seq, ref_seq): """ Use Needleman-Wunsch alignment to find the maximum alignment position in ref_seq Use this position to represent the position of target sequence with mutations """ # Needleman-Wunsch alignment alignment = parasail.nw_trace(query_seq, ref_seq, 10, 1, parasail.blosum62) # extract CIGAR object cigar = alignment.cigar cigar_string = cigar.decode.decode("utf-8") # record ref_pos ref_pos = 0 matches = re.findall(r'(\d+)([MIDNSHP=X])', cigar_string) max_num_before_equal = 0 max_equal_index = -1 total_before_max_equal = 0 for i, (num_str, op) in enumerate(matches): num = int(num_str) if op == '=': if num > max_num_before_equal: max_num_before_equal = num max_equal_index = i total_before_max_equal = sum(int(matches[j][0]) for j in range(max_equal_index)) ref_pos = total_before_max_equal return ref_pos def find_gRNA_with_mutation(ref_sequence, exon_chr, start, end, strand, transcript_id, exon_id, gene_symbol, vcf_reader, pam="TTTN", target_length=34): # initialization mutated_sequences = [ref_sequence] # find mutations within interested region mutations = vcf_reader(f"{exon_chr}:{start}-{end}") if mutations: # find mutations mutation_list = [] for mutation in mutations: offset = mutation.POS - start ref = mutation.REF alts = mutation.ALT[:-1] mutation_list.append((offset, ref, alts)) # replace reference sequence of mutation mutated_sequences = construct_combinations(ref_sequence, mutation_list) # find gRNA in ref_sequence or all mutated_sequences targets = [] for seq in mutated_sequences: len_sequence = len(seq) dnatorna = {'A': 'A', 'T': 'U', 'C': 'C', 'G': 'G'} for i in range(len_sequence - target_length + 1): target_seq = seq[i:i + target_length] if target_seq[4:7] == 'TTT': pos = ref_sequence.find(target_seq) if pos != -1: is_mut = False if strand == -1: tar_start = end - pos - target_length + 1 else: tar_start = start + pos else: is_mut = True nw_pos = needleman_wunsch_alignment(target_seq, ref_sequence) if strand == -1: tar_start = str(end - nw_pos - target_length + 1) + '*' else: tar_start = str(start + nw_pos) + '*' gRNA = ''.join([dnatorna[base] for base in target_seq[8:28]]) targets.append([target_seq, gRNA, exon_chr, str(strand), str(tar_start), transcript_id, exon_id, gene_symbol, is_mut]) # filter duplicated targets unique_targets_set = set(tuple(element) for element in targets) unique_targets = [list(element) for element in unique_targets_set] return unique_targets def format_prediction_output_with_mutation(targets, model_path): Crispr_BiLSTM = BiLSTM_model(input_shape=(34, 4)) Crispr_BiLSTM.load_weights(model_path) formatted_data = [] for target in targets: # Predict encoded_seq = get_seqcode(target[0]) prediction = float(list(Crispr_BiLSTM.predict(encoded_seq, verbose=0)[0])[0]) if prediction > 100: prediction = 100 # Format output gRNA = target[1] exon_chr = target[2] strand = target[3] tar_start = target[4] transcript_id = target[5] exon_id = target[6] gene_symbol = target[7] is_mut = target[8] formatted_data.append([gene_symbol, exon_chr, strand, tar_start, transcript_id, exon_id, target[0], gRNA, prediction, is_mut]) return formatted_data def process_gene(gene_symbol, vcf_reader, model_path): transcripts = fetch_ensembl_transcripts(gene_symbol) results = [] all_exons = [] # To accumulate all exons all_gene_sequences = [] # To accumulate all gene sequences if transcripts: for transcript in transcripts: Exons = transcript['Exon'] all_exons.extend(Exons) # Add all exons from this transcript to the list transcript_id = transcript['id'] for Exon in Exons: exon_id = Exon['id'] gene_sequence = fetch_ensembl_sequence(exon_id) # Reference exon sequence if gene_sequence: all_gene_sequences.append(gene_sequence) # Add this gene sequence to the list exon_chr = Exon['seq_region_name'] start = Exon['start'] end = Exon['end'] strand = Exon['strand'] targets = find_gRNA_with_mutation(gene_sequence, exon_chr, start, end, strand, transcript_id, exon_id, gene_symbol, vcf_reader) if targets: # Predict on-target efficiency for each gRNA site formatted_data = format_prediction_output_with_mutation(targets, model_path) results.extend(formatted_data) # Flatten the results else: print(f"Failed to retrieve gene sequence for exon {exon_id}.") else: print("Failed to retrieve transcripts.") # Sort results based on prediction score (assuming score is at the 8th index) sorted_results = sorted(results, key=lambda x: x[8], reverse=True) # Return the sorted output, combined gene sequences, and all exons return sorted_results, all_gene_sequences, all_exons