Spaces:
Sleeping
Sleeping
Commit
Β·
9ed0ab0
1
Parent(s):
e2674bd
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
load_dotenv()
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
import streamlit as st
|
7 |
+
from scan_pdf_parser import get_text_from_scanned_pdf
|
8 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
+
from langchain.llms import GooglePalm
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
from langchain.document_loaders import PyPDFLoader
|
14 |
+
from langchain.vectorstores import FAISS
|
15 |
+
from langchain.docstore.document import Document
|
16 |
+
|
17 |
+
llm = GooglePalm(temperature=0.9)
|
18 |
+
|
19 |
+
st.title("Query PDF Tool")
|
20 |
+
|
21 |
+
uploaded_file = st.file_uploader("Choose a PDF file")
|
22 |
+
main_placeholder = st.empty()
|
23 |
+
second_placeholder = st.empty()
|
24 |
+
|
25 |
+
|
26 |
+
if uploaded_file:
|
27 |
+
if not os.path.exists(uploaded_file.name):
|
28 |
+
main_placeholder.text("Data Loading...Started...βββ")
|
29 |
+
with open(f'{uploaded_file.name}', 'wb') as f:
|
30 |
+
f.write(uploaded_file.getbuffer())
|
31 |
+
|
32 |
+
pdf_loader = PyPDFLoader(uploaded_file.name)
|
33 |
+
documents = pdf_loader.load()
|
34 |
+
|
35 |
+
raw_text = ''
|
36 |
+
for doc in documents:
|
37 |
+
raw_text += doc.page_content
|
38 |
+
|
39 |
+
if len(raw_text) < 10:
|
40 |
+
main_placeholder.text("It looks like Scanned PDF, No worries converting it...βββ")
|
41 |
+
raw_text = get_text_from_scanned_pdf(uploaded_file.name)
|
42 |
+
|
43 |
+
main_placeholder.text("Text Splitter...Started...β
β
β
")
|
44 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
45 |
+
separators=['\n\n', '\n', '.', ','],
|
46 |
+
chunk_size=2000
|
47 |
+
)
|
48 |
+
|
49 |
+
texts = text_splitter.split_text(raw_text)
|
50 |
+
docs = [Document(page_content=t) for t in texts]
|
51 |
+
|
52 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base")
|
53 |
+
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
54 |
+
vectorstore = FAISS.from_documents(docs, embeddings)
|
55 |
+
|
56 |
+
# Save the FAISS index to a pickle file
|
57 |
+
with open(f'vector_store_{uploaded_file.name}.pkl', "wb") as f:
|
58 |
+
pickle.dump(vectorstore, f)
|
59 |
+
|
60 |
+
main_placeholder.text("Data Loading...Completed...β
β
β
")
|
61 |
+
|
62 |
+
|
63 |
+
query = second_placeholder.text_input("Question:")
|
64 |
+
if query:
|
65 |
+
if os.path.exists(f'vector_store_{uploaded_file.name}.pkl'):
|
66 |
+
with open(f'vector_store_{uploaded_file.name}.pkl', "rb") as f:
|
67 |
+
vector_store = pickle.load(f)
|
68 |
+
|
69 |
+
prompt_template = """
|
70 |
+
<context>
|
71 |
+
{context}
|
72 |
+
</context>
|
73 |
+
Question: {question}
|
74 |
+
Assistant:"""
|
75 |
+
prompt = PromptTemplate(
|
76 |
+
template=prompt_template, input_variables=["context", "question"]
|
77 |
+
)
|
78 |
+
|
79 |
+
chain = RetrievalQA.from_chain_type(
|
80 |
+
llm=llm,
|
81 |
+
chain_type="stuff",
|
82 |
+
retriever=vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 1}),
|
83 |
+
return_source_documents=True,
|
84 |
+
chain_type_kwargs={"prompt": prompt}
|
85 |
+
)
|
86 |
+
|
87 |
+
with st.spinner("Searching for the answer..."):
|
88 |
+
result = chain({"query": query})
|
89 |
+
st.header("Answer")
|
90 |
+
st.write(result["result"])
|
91 |
+
|