Nithi123 commited on
Commit
ec17a93
1 Parent(s): aa1c072

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -24
app.py CHANGED
@@ -10,15 +10,11 @@ from langchain_community.vectorstores import FAISS
10
  from langchain_community.document_loaders import PyPDFDirectoryLoader
11
  import time
12
 
13
- # Retrieve the API keys from environment variables
14
  huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
15
  groq_api_key = os.getenv("GROQ_API_KEY")
16
 
17
- # Debugging: Print the API keys to ensure they are being retrieved (remove these prints in production)
18
- st.write("Hugging Face Hub API Token:", huggingfacehub_api_token)
19
- st.write("GROQ API Key:", groq_api_key)
20
-
21
- # Check if the keys are retrieved correctly
22
  if not huggingfacehub_api_token:
23
  st.error("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
24
  st.stop()
@@ -26,16 +22,14 @@ if not groq_api_key:
26
  st.error("GROQ_API_KEY environment variable is not set")
27
  st.stop()
28
 
29
- # Set environment variables for Hugging Face
30
- os.environ['HUGGINGFACEHUB_API_TOKEN'] = huggingfacehub_api_token
31
-
32
- # Initialize the ChatGroq LLM with the retrieved API key
33
  try:
34
  llm = ChatGroq(api_key=groq_api_key, model_name="Llama3-8b-8192")
35
  except Exception as e:
36
  st.error(f"Failed to initialize ChatGroq LLM: {e}")
37
  st.stop()
38
 
 
39
  st.title("DataScience Chatgroq With Llama3")
40
 
41
  prompt = ChatPromptTemplate.from_template(
@@ -63,25 +57,19 @@ def vector_embedding():
63
 
64
  prompt1 = st.text_input("Enter Your Question From Documents")
65
 
 
66
  if st.button("Documents Embedding"):
67
- vector_embedding()
 
 
 
68
 
 
69
  if prompt1:
70
  if "vectors" not in st.session_state:
71
  st.error("Vectors are not initialized. Please click 'Documents Embedding' first.")
72
  else:
73
- document_chain = create_stuff_documents_chain(llm, prompt)
74
- retriever = st.session_state.vectors.as_retriever()
75
- retrieval_chain = create_retrieval_chain(retriever, document_chain)
76
  try:
77
- start = time.process_time()
78
- response = retrieval_chain.invoke({'input': prompt1})
79
- st.write("Response time: ", time.process_time() - start)
80
- st.write(response['answer'])
81
-
82
- with st.expander("Document Similarity Search"):
83
- for i, doc in enumerate(response["context"]):
84
- st.write(doc.page_content)
85
- st.write("--------------------------------")
86
  except Exception as e:
87
- st.error(f"Failed to retrieve the answer: {e}")
 
10
  from langchain_community.document_loaders import PyPDFDirectoryLoader
11
  import time
12
 
13
+ # Retrieve API keys from environment variables
14
  huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
15
  groq_api_key = os.getenv("GROQ_API_KEY")
16
 
17
+ # Check if keys are retrieved correctly
 
 
 
 
18
  if not huggingfacehub_api_token:
19
  st.error("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
20
  st.stop()
 
22
  st.error("GROQ_API_KEY environment variable is not set")
23
  st.stop()
24
 
25
+ # Initialize ChatGroq LLM with error handling
 
 
 
26
  try:
27
  llm = ChatGroq(api_key=groq_api_key, model_name="Llama3-8b-8192")
28
  except Exception as e:
29
  st.error(f"Failed to initialize ChatGroq LLM: {e}")
30
  st.stop()
31
 
32
+
33
  st.title("DataScience Chatgroq With Llama3")
34
 
35
  prompt = ChatPromptTemplate.from_template(
 
57
 
58
  prompt1 = st.text_input("Enter Your Question From Documents")
59
 
60
+ # Inside the button click for document embedding
61
  if st.button("Documents Embedding"):
62
+ try:
63
+ vector_embedding()
64
+ except Exception as e:
65
+ st.error(f"Error initializing vector store: {e}")
66
 
67
+ # Inside the button click for processing user question
68
  if prompt1:
69
  if "vectors" not in st.session_state:
70
  st.error("Vectors are not initialized. Please click 'Documents Embedding' first.")
71
  else:
 
 
 
72
  try:
73
+ # ... rest of your retrieval logic ...
 
 
 
 
 
 
 
 
74
  except Exception as e:
75
+ st.error(f"Error processing your question: {e}")