Njomo commited on
Commit
f1a168b
1 Parent(s): 2631075

added app files

Browse files
Files changed (5) hide show
  1. app.py +92 -0
  2. chain.py +49 -0
  3. combined.txt +0 -0
  4. data.py +25 -0
  5. docs.pkl +3 -0
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import datetime
3
+ import pickle
4
+
5
+ import gradio as gr
6
+ import langchain
7
+ from langchain.llms import HuggingFaceHub
8
+
9
+ from chain import get_new_chain
10
+
11
+ api_token = os.environ["HF_TOKEN"]
12
+
13
+
14
+ def get_faiss_store():
15
+ with open("docs.pkl", "rb") as f:
16
+ faiss_store = pickle.load(f)
17
+ return faiss_store
18
+
19
+ def load_model():
20
+
21
+ print(langchain.__file__)
22
+
23
+ vectorstore = get_faiss_store()
24
+
25
+ flan_ul = HuggingFaceHub(repo_id="google/flan-ul2",
26
+ model_kwargs={"temperature":0.1, "max_new_tokens":200},
27
+ huggingfacehub_api_token=api_token)
28
+
29
+ qa_chain = get_new_chain(vectorstore, flan_ul)
30
+ return qa_chain
31
+
32
+
33
+ def chat(inp, agent):
34
+ result = []
35
+ if agent is None:
36
+ result.append((inp, "Please wait for model to load (3-5 seconds)"))
37
+ return result
38
+ print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
39
+ print("inp: " + inp)
40
+ result = []
41
+ output = agent({"question": inp})
42
+ answer = output["answer"]
43
+ result.append((inp, answer))
44
+ print(result)
45
+ return result
46
+
47
+
48
+ block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
49
+
50
+ with block:
51
+ with gr.Row():
52
+ gr.Markdown("<h3><center>PotterChat</center></h3><p>Ask questions about the Harry Potter Books, Powered by Flan-UL2</p>")
53
+
54
+ chatbot = gr.Chatbot()
55
+
56
+ with gr.Row():
57
+ message = gr.Textbox(
58
+ label="What's your question?",
59
+ placeholder="Who was Harry's godfather?",
60
+ lines=1,
61
+ )
62
+ submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
63
+
64
+ gr.Examples(
65
+ examples=[
66
+ "Which house in Hogwarts was Harry in?",
67
+ "Who were Harry's best friends?",
68
+ "Who taught Potions at Hogwarts?",
69
+ ],
70
+ inputs=message,
71
+ )
72
+
73
+ gr.HTML(
74
+ """
75
+ This simple application uses Langchain, an open-source LLM, and FAISS to do Q&A over the Harry Potter books."""
76
+ )
77
+
78
+ gr.HTML(
79
+ "<center>Powered by <a href='huggingface.co'>Hugging Face 🤗</a> and <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
80
+ )
81
+
82
+ # state = gr.State()
83
+ agent_state = gr.State()
84
+
85
+ block.load(load_model, inputs=None, outputs=[agent_state])
86
+
87
+ # submit.click(chat, inputs=[message, state, agent_state], outputs=[chatbot, state])
88
+ # message.submit(chat, inputs=[message, state, agent_state], outputs=[chatbot, state])
89
+ submit.click(chat, inputs=[message, agent_state], outputs=[chatbot])
90
+ message.submit(chat, inputs=[message, agent_state], outputs=[chatbot])
91
+
92
+ block.launch(debug=True)
chain.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List
2
+
3
+ from langchain import PromptTemplate
4
+ from langchain.chains.base import Chain
5
+ from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
6
+ from langchain.chains.question_answering import load_qa_chain
7
+ from langchain.prompts import PromptTemplate
8
+ from langchain.vectorstores import FAISS
9
+ from pydantic import BaseModel
10
+
11
+
12
+ class CustomChain(Chain, BaseModel):
13
+
14
+ vstore: FAISS
15
+ chain: BaseCombineDocumentsChain
16
+
17
+ @property
18
+ def input_keys(self) -> List[str]:
19
+ return ["question"]
20
+
21
+ @property
22
+ def output_keys(self) -> List[str]:
23
+ return ["answer"]
24
+
25
+ def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
26
+ # def _call(self, inputs: str) -> Dict[str, str]:
27
+ question = inputs["question"]
28
+ # question = inputs
29
+ docs = self.vstore.similarity_search(question, k=5)
30
+ answer, _ = self.chain.combine_docs(docs, **inputs)
31
+ return {"answer": answer}
32
+
33
+
34
+ def get_new_chain(vectorstore, llm):
35
+ flan_template = """Use only the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
36
+
37
+ {context}
38
+
39
+ Question: {question}
40
+ """
41
+ PROMPT = PromptTemplate(template=flan_template, input_variables=["question", "context"])
42
+
43
+ doc_chain = load_qa_chain(
44
+ llm,
45
+ chain_type="stuff",
46
+ prompt=PROMPT,
47
+ verbose=True
48
+ )
49
+ return CustomChain(chain=doc_chain, vstore=vectorstore)
combined.txt ADDED
The diff for this file is too large to render. See raw diff
 
data.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ from langchain.vectorstores import FAISS
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+
5
+
6
+ file = open("combined.txt", "r")
7
+ contents = file.read()
8
+
9
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
10
+
11
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
+ text_splitter = RecursiveCharacterTextSplitter(
13
+ chunk_size = 500,
14
+ chunk_overlap = 20,
15
+ length_function = len,
16
+ )
17
+ texts = text_splitter.create_documents([contents])
18
+
19
+ print("Beginning construction of FAISS DB")
20
+ docs = FAISS.from_documents(texts, embeddings)
21
+
22
+ print("Beginning pickle")
23
+ with open("docs.pkl", "wb") as f:
24
+ pickle.dump(docs, f)
25
+ print("pickle over")
docs.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382cb8f95c5e1aa71364e67eb6383368c231b002173aaf5db073ed793f32b5d6
3
+ size 502076344