import pickle from langchain.vectorstores import FAISS from langchain.embeddings import HuggingFaceEmbeddings file = open("combined.txt", "r") contents = file.read() embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size = 500, chunk_overlap = 20, length_function = len, ) texts = text_splitter.create_documents([contents]) print("Beginning construction of FAISS DB") docs = FAISS.from_documents(texts, embeddings) print("Beginning pickle") with open("docs.pkl", "wb") as f: pickle.dump(docs, f) print("pickle over")