Spaces:
Sleeping
Sleeping
NoOrdinaryJoy
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
2 |
+
!pip install --no-deps xformers trl peft accelerate bitsandbytes
|
3 |
+
|
4 |
+
from unsloth import FastLanguageModel
|
5 |
+
import torch
|
6 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
7 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
8 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
9 |
+
|
10 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
11 |
+
fourbit_models = [
|
12 |
+
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
|
13 |
+
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
14 |
+
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
|
15 |
+
"unsloth/llama-3-8b-Instruct-bnb-4bit",
|
16 |
+
"unsloth/llama-3-70b-bnb-4bit",
|
17 |
+
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
|
18 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
19 |
+
"unsloth/mistral-7b-bnb-4bit",
|
20 |
+
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster!
|
21 |
+
] # More models at https://huggingface.co/unsloth
|
22 |
+
|
23 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
24 |
+
model_name = "unsloth/llama-3-8b-bnb-4bit",
|
25 |
+
max_seq_length = max_seq_length,
|
26 |
+
dtype = dtype,
|
27 |
+
load_in_4bit = load_in_4bit,
|
28 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
29 |
+
)
|
30 |
+
|
31 |
+
from google.colab import drive
|
32 |
+
drive.mount('/content/drive')
|
33 |
+
|
34 |
+
import pandas as pd
|
35 |
+
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/qa_examples.csv')
|
36 |
+
df.head(5)
|
37 |
+
|
38 |
+
df.columns = df.columns.str.strip()
|
39 |
+
df.columns
|
40 |
+
|
41 |
+
# Format into new columns
|
42 |
+
df['instruction'] = df.apply(lambda row: f"The following question is solved for {row['marks_available']} marks: {row['question']}. Referring to the mark-scheme, award the appropriate amount of marks to the student: {row['mark_scheme']}", axis=1)
|
43 |
+
df['input'] = df['student_response']
|
44 |
+
df['output'] = df.apply(lambda row: str({'marks': row['marks_award'], 'explanation': row['explanation']}), axis=1)
|
45 |
+
|
46 |
+
# Create a new DataFrame with the desired structure
|
47 |
+
formatted_df = pd.DataFrame({
|
48 |
+
'instruction': df['instruction'],
|
49 |
+
'input': df['input'],
|
50 |
+
'output': df['output']
|
51 |
+
})
|
52 |
+
|
53 |
+
# Display the formatted DataFrame
|
54 |
+
formatted_df.head(5)
|
55 |
+
|
56 |
+
"""* We support Llama, Mistral, Phi-3, Gemma, Yi, DeepSeek, Qwen, TinyLlama, Vicuna, Open Hermes etc
|
57 |
+
* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.
|
58 |
+
* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.
|
59 |
+
* With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models.
|
60 |
+
* [**NEW**] We make Phi-3 Medium / Mini **2x faster**! See our [Phi-3 Medium notebook](https://colab.research.google.com/drive/1hhdhBa1j_hsymiW9m-WzxQtgqTH_NHqi?usp=sharing)
|
61 |
+
|
62 |
+
We now add LoRA adapters so we only need to update 1 to 10% of all parameters!
|
63 |
+
"""
|
64 |
+
|
65 |
+
model = FastLanguageModel.get_peft_model(
|
66 |
+
model,
|
67 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
68 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
69 |
+
"gate_proj", "up_proj", "down_proj",],
|
70 |
+
lora_alpha = 16,
|
71 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
72 |
+
bias = "none", # Supports any, but = "none" is optimized
|
73 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
74 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
75 |
+
random_state = 3407,
|
76 |
+
use_rslora = False, # We support rank stabilized LoRA
|
77 |
+
loftq_config = None, # And LoftQ
|
78 |
+
)
|
79 |
+
|
80 |
+
"""<a name="Data"></a>
|
81 |
+
### Data Prep
|
82 |
+
We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.
|
83 |
+
|
84 |
+
**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).
|
85 |
+
|
86 |
+
**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!
|
87 |
+
|
88 |
+
If you want to use the `llama-3` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1XamvWYinY6FOSX9GLvnqSjjsNflxdhNc?usp=sharing).
|
89 |
+
|
90 |
+
For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing).
|
91 |
+
|
92 |
+
<a name="Train"></a>
|
93 |
+
### Train the model
|
94 |
+
Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!
|
95 |
+
"""
|
96 |
+
|
97 |
+
alpaca_prompt = """
|
98 |
+
### Instruction:
|
99 |
+
{}
|
100 |
+
### Input:
|
101 |
+
{}
|
102 |
+
### Response:
|
103 |
+
{}"""
|
104 |
+
|
105 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
106 |
+
def formatting_prompts_func(examples):
|
107 |
+
instructions = examples["instruction"]
|
108 |
+
inputs = examples["input"]
|
109 |
+
outputs = examples["output"]
|
110 |
+
texts = []
|
111 |
+
for instruction, input, output in zip(instructions, inputs, outputs):
|
112 |
+
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
113 |
+
texts.append(text)
|
114 |
+
return { "text" : texts, }
|
115 |
+
pass
|
116 |
+
|
117 |
+
from datasets import Dataset
|
118 |
+
dataset = Dataset.from_pandas(formatted_df, split = 'train')
|
119 |
+
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
120 |
+
print(dataset)
|
121 |
+
|
122 |
+
from trl import SFTTrainer
|
123 |
+
from transformers import TrainingArguments
|
124 |
+
from unsloth import is_bfloat16_supported
|
125 |
+
|
126 |
+
trainer = SFTTrainer(
|
127 |
+
model = model,
|
128 |
+
tokenizer = tokenizer,
|
129 |
+
train_dataset = dataset,
|
130 |
+
dataset_text_field = "text",
|
131 |
+
max_seq_length = max_seq_length,
|
132 |
+
dataset_num_proc = 3,
|
133 |
+
packing = False, # Can make training 5x faster for short sequences.
|
134 |
+
args = TrainingArguments(
|
135 |
+
per_device_train_batch_size = 2,
|
136 |
+
gradient_accumulation_steps = 4,
|
137 |
+
warmup_steps = 5,
|
138 |
+
max_steps = 60,
|
139 |
+
learning_rate = 2e-4,
|
140 |
+
fp16 = not is_bfloat16_supported(),
|
141 |
+
bf16 = is_bfloat16_supported(),
|
142 |
+
logging_steps = 1,
|
143 |
+
optim = "adamw_8bit",
|
144 |
+
weight_decay = 0.01,
|
145 |
+
lr_scheduler_type = "linear",
|
146 |
+
seed = 3407,
|
147 |
+
output_dir = "outputs",
|
148 |
+
),
|
149 |
+
)
|
150 |
+
|
151 |
+
#@title Show current memory stats
|
152 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
153 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
154 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
155 |
+
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
156 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
157 |
+
|
158 |
+
trainer_stats = trainer.train()
|
159 |
+
|
160 |
+
#@title Show final memory and time stats
|
161 |
+
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
162 |
+
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
|
163 |
+
used_percentage = round(used_memory /max_memory*100, 3)
|
164 |
+
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
|
165 |
+
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
166 |
+
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
|
167 |
+
print(f"Peak reserved memory = {used_memory} GB.")
|
168 |
+
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
169 |
+
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
170 |
+
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
171 |
+
|
172 |
+
"""<a name="Inference"></a>
|
173 |
+
### Inference
|
174 |
+
Let's run the model! You can change the instruction and input - leave the output blank!
|
175 |
+
|
176 |
+
You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!
|
177 |
+
"""
|
178 |
+
|
179 |
+
from transformers import TextStreamer
|
180 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
181 |
+
|
182 |
+
import json
|
183 |
+
import re
|
184 |
+
|
185 |
+
def extract_json(text):
|
186 |
+
# Regular expression pattern to match JSON objects
|
187 |
+
json_pattern = re.compile(r'\{.*?\}', re.DOTALL)
|
188 |
+
potential_jsons = json_pattern.findall(text)
|
189 |
+
extracted_jsons = []
|
190 |
+
for potential_json in potential_jsons:
|
191 |
+
try:
|
192 |
+
extracted_jsons.append(json.loads(potential_json))
|
193 |
+
except json.JSONDecodeError:
|
194 |
+
continue
|
195 |
+
return extracted_jsons[0:1]
|
196 |
+
|
197 |
+
# alpaca_prompt = You MUST copy from above!
|
198 |
+
inputs = tokenizer(
|
199 |
+
[
|
200 |
+
alpaca_prompt.format(
|
201 |
+
"Find the derivative of f(x) = 3x^2 + 4cos(x) - 1 for a maximum of 2 marks.'. Referring to the mark-scheme, award the appropriate amount of marks to the student: 'Correctly apply differentiation rules.", # instruction
|
202 |
+
"6x^2 - 4sin(x)", # input
|
203 |
+
"", # output - leave this blank for generation!
|
204 |
+
)
|
205 |
+
], return_tensors = "pt").to("cuda")
|
206 |
+
|
207 |
+
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
208 |
+
tokenizer.batch_decode(outputs)
|
209 |
+
|