Spaces:
Sleeping
Sleeping
Merge pull request #286 from jhj0517/refactor/remove-duplicates
Browse files
app.py
CHANGED
@@ -88,6 +88,9 @@ class App:
|
|
88 |
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=whisper_params["compression_ratio_threshold"],
|
89 |
interactive=True,
|
90 |
info="If the gzip compression ratio is above this value, treat as failed.")
|
|
|
|
|
|
|
91 |
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
92 |
nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
|
93 |
info="Exponential length penalty constant.")
|
@@ -113,9 +116,6 @@ class App:
|
|
113 |
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
|
114 |
precision=0,
|
115 |
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
116 |
-
nb_chunk_length = gr.Number(label="Chunk Length", value=lambda: whisper_params["chunk_length"],
|
117 |
-
precision=0,
|
118 |
-
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
119 |
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
|
120 |
value=lambda: whisper_params["hallucination_silence_threshold"],
|
121 |
info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
@@ -127,8 +127,6 @@ class App:
|
|
127 |
precision=0,
|
128 |
info="Number of segments to consider for the language detection.")
|
129 |
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
130 |
-
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=whisper_params["chunk_length_s"],
|
131 |
-
precision=0)
|
132 |
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
133 |
|
134 |
with gr.Accordion("BGM Separation", open=False):
|
@@ -177,13 +175,13 @@ class App:
|
|
177 |
temperature=sd_temperature, compression_ratio_threshold=nb_compression_ratio_threshold,
|
178 |
vad_filter=cb_vad_filter, threshold=sd_threshold, min_speech_duration_ms=nb_min_speech_duration_ms,
|
179 |
max_speech_duration_s=nb_max_speech_duration_s, min_silence_duration_ms=nb_min_silence_duration_ms,
|
180 |
-
speech_pad_ms=nb_speech_pad_ms,
|
181 |
is_diarize=cb_diarize, hf_token=tb_hf_token, diarization_device=dd_diarization_device,
|
182 |
length_penalty=nb_length_penalty, repetition_penalty=nb_repetition_penalty,
|
183 |
no_repeat_ngram_size=nb_no_repeat_ngram_size, prefix=tb_prefix, suppress_blank=cb_suppress_blank,
|
184 |
suppress_tokens=tb_suppress_tokens, max_initial_timestamp=nb_max_initial_timestamp,
|
185 |
word_timestamps=cb_word_timestamps, prepend_punctuations=tb_prepend_punctuations,
|
186 |
-
append_punctuations=tb_append_punctuations, max_new_tokens=nb_max_new_tokens,
|
187 |
hallucination_silence_threshold=nb_hallucination_silence_threshold, hotwords=tb_hotwords,
|
188 |
language_detection_threshold=nb_language_detection_threshold,
|
189 |
language_detection_segments=nb_language_detection_segments,
|
|
|
88 |
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=whisper_params["compression_ratio_threshold"],
|
89 |
interactive=True,
|
90 |
info="If the gzip compression ratio is above this value, treat as failed.")
|
91 |
+
nb_chunk_length = gr.Number(label="Chunk Length (s)", value=lambda: whisper_params["chunk_length"],
|
92 |
+
precision=0,
|
93 |
+
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
94 |
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
95 |
nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
|
96 |
info="Exponential length penalty constant.")
|
|
|
116 |
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
|
117 |
precision=0,
|
118 |
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
|
|
|
|
|
|
119 |
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
|
120 |
value=lambda: whisper_params["hallucination_silence_threshold"],
|
121 |
info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
|
|
127 |
precision=0,
|
128 |
info="Number of segments to consider for the language detection.")
|
129 |
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
|
|
|
|
130 |
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
|
131 |
|
132 |
with gr.Accordion("BGM Separation", open=False):
|
|
|
175 |
temperature=sd_temperature, compression_ratio_threshold=nb_compression_ratio_threshold,
|
176 |
vad_filter=cb_vad_filter, threshold=sd_threshold, min_speech_duration_ms=nb_min_speech_duration_ms,
|
177 |
max_speech_duration_s=nb_max_speech_duration_s, min_silence_duration_ms=nb_min_silence_duration_ms,
|
178 |
+
speech_pad_ms=nb_speech_pad_ms, chunk_length=nb_chunk_length, batch_size=nb_batch_size,
|
179 |
is_diarize=cb_diarize, hf_token=tb_hf_token, diarization_device=dd_diarization_device,
|
180 |
length_penalty=nb_length_penalty, repetition_penalty=nb_repetition_penalty,
|
181 |
no_repeat_ngram_size=nb_no_repeat_ngram_size, prefix=tb_prefix, suppress_blank=cb_suppress_blank,
|
182 |
suppress_tokens=tb_suppress_tokens, max_initial_timestamp=nb_max_initial_timestamp,
|
183 |
word_timestamps=cb_word_timestamps, prepend_punctuations=tb_prepend_punctuations,
|
184 |
+
append_punctuations=tb_append_punctuations, max_new_tokens=nb_max_new_tokens,
|
185 |
hallucination_silence_threshold=nb_hallucination_silence_threshold, hotwords=tb_hotwords,
|
186 |
language_detection_threshold=nb_language_detection_threshold,
|
187 |
language_detection_segments=nb_language_detection_segments,
|
configs/default_parameters.yaml
CHANGED
@@ -12,7 +12,7 @@ whisper:
|
|
12 |
initial_prompt: null
|
13 |
temperature: 0
|
14 |
compression_ratio_threshold: 2.4
|
15 |
-
|
16 |
batch_size: 24
|
17 |
length_penalty: 1
|
18 |
repetition_penalty: 1
|
@@ -25,7 +25,6 @@ whisper:
|
|
25 |
prepend_punctuations: "\"'“¿([{-"
|
26 |
append_punctuations: "\"'.。,,!!??::”)]}、"
|
27 |
max_new_tokens: null
|
28 |
-
chunk_length: null
|
29 |
hallucination_silence_threshold: null
|
30 |
hotwords: null
|
31 |
language_detection_threshold: null
|
|
|
12 |
initial_prompt: null
|
13 |
temperature: 0
|
14 |
compression_ratio_threshold: 2.4
|
15 |
+
chunk_length: 30
|
16 |
batch_size: 24
|
17 |
length_penalty: 1
|
18 |
repetition_penalty: 1
|
|
|
25 |
prepend_punctuations: "\"'“¿([{-"
|
26 |
append_punctuations: "\"'.。,,!!??::”)]}、"
|
27 |
max_new_tokens: null
|
|
|
28 |
hallucination_silence_threshold: null
|
29 |
hotwords: null
|
30 |
language_detection_threshold: null
|
modules/whisper/insanely_fast_whisper_inference.py
CHANGED
@@ -78,7 +78,7 @@ class InsanelyFastWhisperInference(WhisperBase):
|
|
78 |
segments = self.model(
|
79 |
inputs=audio,
|
80 |
return_timestamps=True,
|
81 |
-
chunk_length_s=params.
|
82 |
batch_size=params.batch_size,
|
83 |
generate_kwargs={
|
84 |
"language": params.lang,
|
|
|
78 |
segments = self.model(
|
79 |
inputs=audio,
|
80 |
return_timestamps=True,
|
81 |
+
chunk_length_s=params.chunk_length,
|
82 |
batch_size=params.batch_size,
|
83 |
generate_kwargs={
|
84 |
"language": params.lang,
|
modules/whisper/whisper_parameter.py
CHANGED
@@ -26,7 +26,6 @@ class WhisperParameters:
|
|
26 |
max_speech_duration_s: gr.Number
|
27 |
min_silence_duration_ms: gr.Number
|
28 |
speech_pad_ms: gr.Number
|
29 |
-
chunk_length_s: gr.Number
|
30 |
batch_size: gr.Number
|
31 |
is_diarize: gr.Checkbox
|
32 |
hf_token: gr.Textbox
|
@@ -136,10 +135,6 @@ class WhisperParameters:
|
|
136 |
speech_pad_ms: gr.Number
|
137 |
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side
|
138 |
|
139 |
-
chunk_length_s: gr.Number
|
140 |
-
This parameter is related with insanely-fast-whisper pipe.
|
141 |
-
Maximum length of each chunk
|
142 |
-
|
143 |
batch_size: gr.Number
|
144 |
This parameter is related with insanely-fast-whisper pipe. Batch size to pass to the pipe
|
145 |
|
@@ -193,8 +188,8 @@ class WhisperParameters:
|
|
193 |
the maximum will be set by the default max_length.
|
194 |
|
195 |
chunk_length: gr.Number
|
196 |
-
This parameter is related to faster-whisper. The length of audio segments
|
197 |
-
|
198 |
|
199 |
hallucination_silence_threshold: gr.Number
|
200 |
This parameter is related to faster-whisper. When word_timestamps is True, skip silent periods longer than this threshold
|
@@ -252,52 +247,51 @@ class WhisperParameters:
|
|
252 |
|
253 |
@dataclass
|
254 |
class WhisperValues:
|
255 |
-
model_size: str
|
256 |
-
lang: str
|
257 |
-
is_translate: bool
|
258 |
-
beam_size: int
|
259 |
-
log_prob_threshold: float
|
260 |
-
no_speech_threshold: float
|
261 |
-
compute_type: str
|
262 |
-
best_of: int
|
263 |
-
patience: float
|
264 |
-
condition_on_previous_text: bool
|
265 |
-
prompt_reset_on_temperature: float
|
266 |
-
initial_prompt: Optional[str]
|
267 |
-
temperature: float
|
268 |
-
compression_ratio_threshold: float
|
269 |
-
vad_filter: bool
|
270 |
-
threshold: float
|
271 |
-
min_speech_duration_ms: int
|
272 |
-
max_speech_duration_s: float
|
273 |
-
min_silence_duration_ms: int
|
274 |
-
speech_pad_ms: int
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
uvr_save_file: bool
|
301 |
"""
|
302 |
A data class to use Whisper parameters.
|
303 |
"""
|
@@ -318,7 +312,6 @@ class WhisperValues:
|
|
318 |
"initial_prompt": None if not self.initial_prompt else self.initial_prompt,
|
319 |
"temperature": self.temperature,
|
320 |
"compression_ratio_threshold": self.compression_ratio_threshold,
|
321 |
-
"chunk_length_s": None if self.chunk_length_s is None else self.chunk_length_s,
|
322 |
"batch_size": self.batch_size,
|
323 |
"length_penalty": self.length_penalty,
|
324 |
"repetition_penalty": self.repetition_penalty,
|
|
|
26 |
max_speech_duration_s: gr.Number
|
27 |
min_silence_duration_ms: gr.Number
|
28 |
speech_pad_ms: gr.Number
|
|
|
29 |
batch_size: gr.Number
|
30 |
is_diarize: gr.Checkbox
|
31 |
hf_token: gr.Textbox
|
|
|
135 |
speech_pad_ms: gr.Number
|
136 |
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side
|
137 |
|
|
|
|
|
|
|
|
|
138 |
batch_size: gr.Number
|
139 |
This parameter is related with insanely-fast-whisper pipe. Batch size to pass to the pipe
|
140 |
|
|
|
188 |
the maximum will be set by the default max_length.
|
189 |
|
190 |
chunk_length: gr.Number
|
191 |
+
This parameter is related to faster-whisper and insanely-fast-whisper. The length of audio segments in seconds.
|
192 |
+
If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.
|
193 |
|
194 |
hallucination_silence_threshold: gr.Number
|
195 |
This parameter is related to faster-whisper. When word_timestamps is True, skip silent periods longer than this threshold
|
|
|
247 |
|
248 |
@dataclass
|
249 |
class WhisperValues:
|
250 |
+
model_size: str = "large-v2"
|
251 |
+
lang: Optional[str] = None
|
252 |
+
is_translate: bool = False
|
253 |
+
beam_size: int = 5
|
254 |
+
log_prob_threshold: float = -1.0
|
255 |
+
no_speech_threshold: float = 0.6
|
256 |
+
compute_type: str = "float16"
|
257 |
+
best_of: int = 5
|
258 |
+
patience: float = 1.0
|
259 |
+
condition_on_previous_text: bool = True
|
260 |
+
prompt_reset_on_temperature: float = 0.5
|
261 |
+
initial_prompt: Optional[str] = None
|
262 |
+
temperature: float = 0.0
|
263 |
+
compression_ratio_threshold: float = 2.4
|
264 |
+
vad_filter: bool = False
|
265 |
+
threshold: float = 0.5
|
266 |
+
min_speech_duration_ms: int = 250
|
267 |
+
max_speech_duration_s: float = float("inf")
|
268 |
+
min_silence_duration_ms: int = 2000
|
269 |
+
speech_pad_ms: int = 400
|
270 |
+
batch_size: int = 24
|
271 |
+
is_diarize: bool = False
|
272 |
+
hf_token: str = ""
|
273 |
+
diarization_device: str = "cuda"
|
274 |
+
length_penalty: float = 1.0
|
275 |
+
repetition_penalty: float = 1.0
|
276 |
+
no_repeat_ngram_size: int = 0.0
|
277 |
+
prefix: Optional[str] = None
|
278 |
+
suppress_blank: bool = True
|
279 |
+
suppress_tokens: Optional[str] = "[-1]"
|
280 |
+
max_initial_timestamp: float = 0.0
|
281 |
+
word_timestamps: bool = False
|
282 |
+
prepend_punctuations: Optional[str] = "\"'“¿([{-"
|
283 |
+
append_punctuations: Optional[str] = "\"'.。,,!!??::”)]}、"
|
284 |
+
max_new_tokens: Optional[int] = None
|
285 |
+
chunk_length: Optional[int] = 30
|
286 |
+
hallucination_silence_threshold: Optional[float] = None
|
287 |
+
hotwords: Optional[str] = None
|
288 |
+
language_detection_threshold: Optional[float] = None
|
289 |
+
language_detection_segments: int = 1
|
290 |
+
is_bgm_separate: bool = False
|
291 |
+
uvr_model_size: str = "UVR-MDX-NET-Inst_HQ_4"
|
292 |
+
uvr_device: str = "cuda"
|
293 |
+
uvr_segment_size: int = 256
|
294 |
+
uvr_save_file: bool = False
|
|
|
295 |
"""
|
296 |
A data class to use Whisper parameters.
|
297 |
"""
|
|
|
312 |
"initial_prompt": None if not self.initial_prompt else self.initial_prompt,
|
313 |
"temperature": self.temperature,
|
314 |
"compression_ratio_threshold": self.compression_ratio_threshold,
|
|
|
315 |
"batch_size": self.batch_size,
|
316 |
"length_penalty": self.length_penalty,
|
317 |
"repetition_penalty": self.repetition_penalty,
|