import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import spaces device = "cuda" tokenizer = AutoTokenizer.from_pretrained("NoaiGPT/777") model = AutoModelForSeq2SeqLM.from_pretrained("NoaiGPT/777").to(device) @spaces.GPU def generate_title(text): input_ids = tokenizer(f'paraphraser: {text}', return_tensors="pt", padding="longest", truncation=True, max_length=64).input_ids.to(device) outputs = model.generate( input_ids, num_beams=4, num_beam_groups=4, num_return_sequences=4, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.8, max_length=64 ) return tokenizer.batch_decode(outputs, skip_special_tokens=True) def gradio_generate_title(text): titles = generate_title(text) return "\n\n".join(titles) iface = gr.Interface( fn=gradio_generate_title, inputs=gr.Textbox(lines=5, label="Input Text"), outputs=gr.Textbox(lines=10, label="Generated Titles"), title="Title Generator", description="Generate multiple paraphrased titles from input text using NoaiGPT/777 model." ) iface.launch()