|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, T5ForConditionalGeneration |
|
from sentence_splitter import SentenceSplitter |
|
from itertools import product |
|
|
|
|
|
hf_token = os.getenv('HF_TOKEN') |
|
|
|
cuda_available = torch.cuda.is_available() |
|
device = torch.device("cuda" if cuda_available else "cpu") |
|
print(f"Using device: {device}") |
|
|
|
|
|
paraphraser_model_name = "NoaiGPT/777" |
|
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token) |
|
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device) |
|
|
|
|
|
classifier_model_name = "andreas122001/roberta-mixed-detector" |
|
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name) |
|
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device) |
|
|
|
|
|
grammar_model_name = "grammarly/coedit-large" |
|
grammar_tokenizer = AutoTokenizer.from_pretrained(grammar_model_name) |
|
grammar_model = T5ForConditionalGeneration.from_pretrained(grammar_model_name).to(device) |
|
|
|
|
|
splitter = SentenceSplitter(language='en') |
|
|
|
def classify_text(text): |
|
inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) |
|
with torch.no_grad(): |
|
outputs = classifier_model(**inputs) |
|
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) |
|
predicted_class = torch.argmax(probabilities, dim=-1).item() |
|
main_label = classifier_model.config.id2label[predicted_class] |
|
main_score = probabilities[0][predicted_class].item() |
|
return main_label, main_score |
|
|
|
@spaces.GPU |
|
def correct_grammar(text): |
|
inputs = grammar_tokenizer(f'Fix grammatical errors in this sentence: {text}', return_tensors="pt").input_ids.to(device) |
|
outputs = grammar_model.generate(inputs, max_length=256) |
|
corrected_text = grammar_tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(corrected_text) |
|
return corrected_text |
|
|
|
@spaces.GPU |
|
def generate_paraphrases(text, setting, output_format): |
|
sentences = splitter.split(text) |
|
all_sentence_paraphrases = [] |
|
|
|
if setting == 1: |
|
num_return_sequences = 2 |
|
repetition_penalty = 1.1 |
|
no_repeat_ngram_size = 2 |
|
temperature = 1.0 |
|
max_length = 128 |
|
elif setting == 2: |
|
num_return_sequences = 2 |
|
repetition_penalty = 1.2 |
|
no_repeat_ngram_size = 3 |
|
temperature = 1.2 |
|
max_length = 192 |
|
elif setting == 3: |
|
|
|
num_return_sequences = 2 |
|
repetition_penalty = 1.3 |
|
no_repeat_ngram_size = 4 |
|
temperature = 1.4 |
|
max_length = 256 |
|
elif setting == 4: |
|
num_return_sequences = 2 |
|
repetition_penalty = 1.4 |
|
no_repeat_ngram_size = 5 |
|
temperature = 1.6 |
|
max_length = 320 |
|
else: |
|
num_return_sequences = 2 |
|
repetition_penalty = 1.5 |
|
no_repeat_ngram_size = 6 |
|
temperature = 1.8 |
|
max_length = 384 |
|
|
|
top_k = 50 |
|
top_p = 0.95 |
|
length_penalty = 1.0 |
|
|
|
formatted_output = "Original text:\n" + text + "\n\n" |
|
formatted_output += "Paraphrased versions:\n" |
|
|
|
json_output = { |
|
"original_text": text, |
|
"paraphrased_versions": [], |
|
"combined_versions": [], |
|
"human_like_versions": [] |
|
} |
|
|
|
for i, sentence in enumerate(sentences): |
|
inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).to(device) |
|
|
|
|
|
outputs = paraphraser_model.generate( |
|
inputs.input_ids, |
|
attention_mask=inputs.attention_mask, |
|
num_return_sequences=num_return_sequences, |
|
repetition_penalty=repetition_penalty, |
|
no_repeat_ngram_size=no_repeat_ngram_size, |
|
temperature=temperature, |
|
max_length=max_length, |
|
top_k=top_k, |
|
top_p=top_p, |
|
do_sample=True, |
|
early_stopping=False, |
|
length_penalty=length_penalty |
|
) |
|
|
|
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
corrected_paraphrases = [correct_grammar(paraphrase) for paraphrase in paraphrases] |
|
|
|
formatted_output += f"Original sentence {i+1}: {sentence}\n" |
|
for j, paraphrase in enumerate(corrected_paraphrases, 1): |
|
formatted_output += f" Paraphrase {j}: {paraphrase}\n" |
|
|
|
json_output["paraphrased_versions"].append({ |
|
f"original_sentence_{i+1}": sentence, |
|
"paraphrases": corrected_paraphrases |
|
}) |
|
|
|
all_sentence_paraphrases.append(corrected_paraphrases) |
|
formatted_output += "\n" |
|
|
|
all_combinations = list(product(*all_sentence_paraphrases)) |
|
|
|
formatted_output += "\nCombined paraphrased versions:\n" |
|
combined_versions = [] |
|
for i, combination in enumerate(all_combinations[:50], 1): |
|
combined_paraphrase = " ".join(combination) |
|
combined_versions.append(combined_paraphrase) |
|
|
|
json_output["combined_versions"] = combined_versions |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, T5ForConditionalGeneration |
|
from sentence_splitter import SentenceSplitter |
|
from itertools import product |
|
|
|
|
|
hf_token = os.getenv('HF_TOKEN') |
|
|
|
cuda_available = torch.cuda.is_available() |
|
device = torch.device("cuda" if cuda_available else "cpu") |
|
print(f"Using device: {device}") |
|
|
|
|
|
paraphraser_model_name = "NoaiGPT/777" |
|
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token) |
|
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device) |
|
|
|
|
|
classifier_model_name = "andreas122001/roberta-mixed-detector" |
|
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name) |
|
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device) |
|
|
|
|
|
grammar_model_name = "grammarly/coedit-large" |
|
grammar_tokenizer = AutoTokenizer.from_pretrained(grammar_model_name) |
|
grammar_model = T5ForConditionalGeneration.from_pretrained(grammar_model_name).to(device) |
|
|
|
|
|
splitter = SentenceSplitter(language='en') |
|
|
|
def classify_text(text): |
|
inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) |
|
with torch.no_grad(): |
|
outputs = classifier_model(**inputs) |
|
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) |
|
predicted_class = torch.argmax(probabilities, dim=-1).item() |
|
main_label = classifier_model.config.id2label[predicted_class] |
|
main_score = probabilities[0][predicted_class].item() |
|
return main_label, main_score |
|
|
|
@spaces.GPU |
|
def correct_grammar(text): |
|
inputs = grammar_tokenizer(f'Fix grammatical errors in this sentence: {text}', return_tensors="pt").input_ids.to(device) |
|
outputs = grammar_model.generate(inputs, max_length=256) |
|
corrected_text = grammar_tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return corrected_text |
|
|
|
@spaces.GPU |
|
def generate_paraphrases(text, setting, output_format): |
|
sentences = splitter.split(text) |
|
all_sentence_paraphrases = [] |
|
|
|
|
|
settings = { |
|
1: {"num_return_sequences": 2, "repetition_penalty": 1.1, "no_repeat_ngram_size": 2, "temperature": 1.0, "max_length": 128}, |
|
2: {"num_return_sequences": 2, "repetition_penalty": 1.2, "no_repeat_ngram_size": 3, "temperature": 1.2, "max_length": 192}, |
|
3: {"num_return_sequences": 2, "repetition_penalty": 1.3, "no_repeat_ngram_size": 4, "temperature": 1.4, "max_length": 256}, |
|
4: {"num_return_sequences": 2, "repetition_penalty": 1.4, "no_repeat_ngram_size": 5, "temperature": 1.6, "max_length": 320}, |
|
5: {"num_return_sequences": 2, "repetition_penalty": 1.5, "no_repeat_ngram_size": 6, "temperature": 1.8, "max_length": 384} |
|
} |
|
config = settings.get(setting, settings[5]) |
|
|
|
top_k = 50 |
|
top_p = 0.95 |
|
length_penalty = 1.0 |
|
|
|
formatted_output = "Original text:\n" + text + "\n\n" |
|
formatted_output += "Paraphrased versions:\n" |
|
|
|
json_output = { |
|
"original_text": text, |
|
"paraphrased_versions": [], |
|
"combined_versions": [], |
|
"human_like_versions": [] |
|
} |
|
|
|
|
|
batch_size = 4 |
|
for i in range(0, len(sentences), batch_size): |
|
batch_sentences = sentences[i:i + batch_size] |
|
inputs = paraphraser_tokenizer([f'paraphraser: {sentence}' for sentence in batch_sentences], return_tensors="pt", padding="longest", truncation=True, max_length=config["max_length"]).to(device) |
|
|
|
|
|
outputs = paraphraser_model.generate( |
|
inputs.input_ids, |
|
attention_mask=inputs.attention_mask, |
|
num_return_sequences=config["num_return_sequences"], |
|
repetition_penalty=config["repetition_penalty"], |
|
no_repeat_ngram_size=config["no_repeat_ngram_size"], |
|
temperature=config["temperature"], |
|
max_length=config["max_length"], |
|
top_k=top_k, |
|
top_p=top_p, |
|
do_sample=True, |
|
early_stopping=False, |
|
length_penalty=length_penalty |
|
) |
|
|
|
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
corrected_paraphrases = [correct_grammar(paraphrase) for paraphrase in paraphrases] |
|
|
|
for j, sentence in enumerate(batch_sentences): |
|
formatted_output += f"Original sentence {i + j + 1}: {sentence}\n" |
|
sentence_paraphrases = corrected_paraphrases[j * config["num_return_sequences"]:(j + 1) * config["num_return_sequences"]] |
|
for k, paraphrase in enumerate(sentence_paraphrases, 1): |
|
formatted_output += f" Paraphrase {k}: {paraphrase}\n" |
|
|
|
json_output["paraphrased_versions"].append({ |
|
f"original_sentence_{i + j + 1}": sentence, |
|
"paraphrases": sentence_paraphrases |
|
}) |
|
|
|
all_sentence_paraphrases.append(sentence_paraphrases) |
|
formatted_output += "\n" |
|
|
|
all_combinations = list(product(*all_sentence_paraphrases)) |
|
|
|
formatted_output += "\nCombined paraphrased versions:\n" |
|
combined_versions = [] |
|
for i, combination in enumerate(all_combinations[:50], 1): |
|
combined_paraphrase = " ".join(combination) |
|
combined_versions.append(combined_paraphrase) |
|
|
|
json_output["combined_versions"] = combined_versions |
|
|
|
|
|
human_versions = [] |
|
for i, version in enumerate(combined_versions, 1): |
|
label, score = classify_text(version) |
|
formatted_output += f"Version {i}:\n{version}\n" |
|
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n" |
|
if label == "human-produced" or (label == "machine-generated" and score < 0.98): |
|
human_versions.append((version, label, score)) |
|
|
|
formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n" |
|
for i, (version, label, score) in enumerate(human_versions, 1): |
|
formatted_output += f"Version {i}:\n{version}\n" |
|
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n" |
|
|
|
json_output["human_like_versions"] = [ |
|
{"version": version, "label": label, "confidence_score": score} |
|
for version, label, score in human_versions |
|
] |
|
|
|
|
|
if not human_versions: |
|
human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5] |
|
formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n" |
|
for i, (version, label, score) in enumerate(human_versions, 1): |
|
formatted_output += f"Version {i}:\n{version}\n" |
|
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n" |
|
|
|
if output_format == "text": |
|
return formatted_output, "\n\n".join([v[0] for v in human_versions]) |
|
else: |
|
return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions]) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_paraphrases, |
|
inputs=[ |
|
gr.Textbox(lines=5, label="Input Text"), |
|
gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"), |
|
gr.Radio(["text", "json"], label="Output Format") |
|
], |
|
outputs=[ |
|
gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"), |
|
gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases") |
|
], |
|
title="Advanced Diverse Paraphraser with Human-like Filter", |
|
description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output." |
|
) |
|
|
|
|
|
iface.launch() |