NoaiGPT commited on
Commit
ff0f79d
·
1 Parent(s): 6bc0d59
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -180,7 +180,6 @@
180
 
181
  # # Launch the interface
182
  # iface.launch()
183
-
184
  import os
185
  import json
186
  import gradio as gr
@@ -229,7 +228,6 @@ def correct_grammar(text):
229
  inputs = grammar_tokenizer(f'Fix grammatical errors in this sentence: {text}', return_tensors="pt").input_ids.to(device)
230
  outputs = grammar_model.generate(inputs, max_length=256)
231
  corrected_text = grammar_tokenizer.decode(outputs[0], skip_special_tokens=True)
232
- print(corrected_text)
233
  return corrected_text
234
 
235
  @spaces.GPU
@@ -303,16 +301,18 @@ def generate_paraphrases(text, setting, output_format):
303
 
304
  paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
305
 
 
 
306
  formatted_output += f"Original sentence {i+1}: {sentence}\n"
307
- for j, paraphrase in enumerate(paraphrases, 1):
308
  formatted_output += f" Paraphrase {j}: {paraphrase}\n"
309
 
310
  json_output["paraphrased_versions"].append({
311
  f"original_sentence_{i+1}": sentence,
312
- "paraphrases": paraphrases
313
  })
314
 
315
- all_sentence_paraphrases.append(paraphrases)
316
  formatted_output += "\n"
317
 
318
  all_combinations = list(product(*all_sentence_paraphrases))
@@ -328,12 +328,11 @@ def generate_paraphrases(text, setting, output_format):
328
  # Classify combined versions
329
  human_versions = []
330
  for i, version in enumerate(combined_versions, 1):
331
- corrected_version = correct_grammar(version)
332
- label, score = classify_text(corrected_version)
333
- formatted_output += f"Version {i}:\n{corrected_version}\n"
334
  formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
335
  if label == "human-produced" or (label == "machine-generated" and score < 0.98):
336
- human_versions.append((corrected_version, label, score))
337
 
338
  formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
339
  for i, (version, label, score) in enumerate(human_versions, 1):
 
180
 
181
  # # Launch the interface
182
  # iface.launch()
 
183
  import os
184
  import json
185
  import gradio as gr
 
228
  inputs = grammar_tokenizer(f'Fix grammatical errors in this sentence: {text}', return_tensors="pt").input_ids.to(device)
229
  outputs = grammar_model.generate(inputs, max_length=256)
230
  corrected_text = grammar_tokenizer.decode(outputs[0], skip_special_tokens=True)
 
231
  return corrected_text
232
 
233
  @spaces.GPU
 
301
 
302
  paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
303
 
304
+ corrected_paraphrases = [correct_grammar(paraphrase) for paraphrase in paraphrases]
305
+
306
  formatted_output += f"Original sentence {i+1}: {sentence}\n"
307
+ for j, paraphrase in enumerate(corrected_paraphrases, 1):
308
  formatted_output += f" Paraphrase {j}: {paraphrase}\n"
309
 
310
  json_output["paraphrased_versions"].append({
311
  f"original_sentence_{i+1}": sentence,
312
+ "paraphrases": corrected_paraphrases
313
  })
314
 
315
+ all_sentence_paraphrases.append(corrected_paraphrases)
316
  formatted_output += "\n"
317
 
318
  all_combinations = list(product(*all_sentence_paraphrases))
 
328
  # Classify combined versions
329
  human_versions = []
330
  for i, version in enumerate(combined_versions, 1):
331
+ label, score = classify_text(version)
332
+ formatted_output += f"Version {i}:\n{version}\n"
 
333
  formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
334
  if label == "human-produced" or (label == "machine-generated" and score < 0.98):
335
+ human_versions.append((version, label, score))
336
 
337
  formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
338
  for i, (version, label, score) in enumerate(human_versions, 1):