Spaces:
Runtime error
Runtime error
const fs = require('fs'); | |
const path = require('path'); | |
const express = require('express'); | |
const { SentencePieceProcessor } = require('@agnai/sentencepiece-js'); | |
const tiktoken = require('tiktoken'); | |
const { Tokenizer } = require('@agnai/web-tokenizers'); | |
const { convertClaudePrompt, convertGooglePrompt } = require('../prompt-converters'); | |
const { readSecret, SECRET_KEYS } = require('./secrets'); | |
const { TEXTGEN_TYPES } = require('../constants'); | |
const { jsonParser } = require('../express-common'); | |
const { setAdditionalHeaders } = require('../additional-headers'); | |
const API_MAKERSUITE = 'https://generativelanguage.googleapis.com'; | |
/** | |
* @typedef { (req: import('express').Request, res: import('express').Response) => Promise<any> } TokenizationHandler | |
*/ | |
/** | |
* @type {{[key: string]: import('tiktoken').Tiktoken}} Tokenizers cache | |
*/ | |
const tokenizersCache = {}; | |
/** | |
* @type {string[]} | |
*/ | |
const TEXT_COMPLETION_MODELS = [ | |
'gpt-3.5-turbo-instruct', | |
'gpt-3.5-turbo-instruct-0914', | |
'text-davinci-003', | |
'text-davinci-002', | |
'text-davinci-001', | |
'text-curie-001', | |
'text-babbage-001', | |
'text-ada-001', | |
'code-davinci-002', | |
'code-davinci-001', | |
'code-cushman-002', | |
'code-cushman-001', | |
'text-davinci-edit-001', | |
'code-davinci-edit-001', | |
'text-embedding-ada-002', | |
'text-similarity-davinci-001', | |
'text-similarity-curie-001', | |
'text-similarity-babbage-001', | |
'text-similarity-ada-001', | |
'text-search-davinci-doc-001', | |
'text-search-curie-doc-001', | |
'text-search-babbage-doc-001', | |
'text-search-ada-doc-001', | |
'code-search-babbage-code-001', | |
'code-search-ada-code-001', | |
]; | |
const CHARS_PER_TOKEN = 3.35; | |
/** | |
* Sentencepiece tokenizer for tokenizing text. | |
*/ | |
class SentencePieceTokenizer { | |
/** | |
* @type {import('@agnai/sentencepiece-js').SentencePieceProcessor} Sentencepiece tokenizer instance | |
*/ | |
#instance; | |
/** | |
* @type {string} Path to the tokenizer model | |
*/ | |
#model; | |
/** | |
* Creates a new Sentencepiece tokenizer. | |
* @param {string} model Path to the tokenizer model | |
*/ | |
constructor(model) { | |
this.#model = model; | |
} | |
/** | |
* Gets the Sentencepiece tokenizer instance. | |
* @returns {Promise<import('@agnai/sentencepiece-js').SentencePieceProcessor|null>} Sentencepiece tokenizer instance | |
*/ | |
async get() { | |
if (this.#instance) { | |
return this.#instance; | |
} | |
try { | |
this.#instance = new SentencePieceProcessor(); | |
await this.#instance.load(this.#model); | |
console.log('Instantiated the tokenizer for', path.parse(this.#model).name); | |
return this.#instance; | |
} catch (error) { | |
console.error('Sentencepiece tokenizer failed to load: ' + this.#model, error); | |
return null; | |
} | |
} | |
} | |
/** | |
* Web tokenizer for tokenizing text. | |
*/ | |
class WebTokenizer { | |
/** | |
* @type {Tokenizer} Web tokenizer instance | |
*/ | |
#instance; | |
/** | |
* @type {string} Path to the tokenizer model | |
*/ | |
#model; | |
/** | |
* Creates a new Web tokenizer. | |
* @param {string} model Path to the tokenizer model | |
*/ | |
constructor(model) { | |
this.#model = model; | |
} | |
/** | |
* Gets the Web tokenizer instance. | |
* @returns {Promise<Tokenizer|null>} Web tokenizer instance | |
*/ | |
async get() { | |
if (this.#instance) { | |
return this.#instance; | |
} | |
try { | |
const arrayBuffer = fs.readFileSync(this.#model).buffer; | |
this.#instance = await Tokenizer.fromJSON(arrayBuffer); | |
console.log('Instantiated the tokenizer for', path.parse(this.#model).name); | |
return this.#instance; | |
} catch (error) { | |
console.error('Web tokenizer failed to load: ' + this.#model, error); | |
return null; | |
} | |
} | |
} | |
const spp_llama = new SentencePieceTokenizer('src/tokenizers/llama.model'); | |
const spp_nerd = new SentencePieceTokenizer('src/tokenizers/nerdstash.model'); | |
const spp_nerd_v2 = new SentencePieceTokenizer('src/tokenizers/nerdstash_v2.model'); | |
const spp_mistral = new SentencePieceTokenizer('src/tokenizers/mistral.model'); | |
const spp_yi = new SentencePieceTokenizer('src/tokenizers/yi.model'); | |
const spp_gemma = new SentencePieceTokenizer('src/tokenizers/gemma.model'); | |
const claude_tokenizer = new WebTokenizer('src/tokenizers/claude.json'); | |
const llama3_tokenizer = new WebTokenizer('src/tokenizers/llama3.json'); | |
const sentencepieceTokenizers = [ | |
'llama', | |
'nerdstash', | |
'nerdstash_v2', | |
'mistral', | |
'yi', | |
'gemma', | |
]; | |
/** | |
* Gets the Sentencepiece tokenizer by the model name. | |
* @param {string} model Sentencepiece model name | |
* @returns {SentencePieceTokenizer|null} Sentencepiece tokenizer | |
*/ | |
function getSentencepiceTokenizer(model) { | |
if (model.includes('llama')) { | |
return spp_llama; | |
} | |
if (model.includes('nerdstash')) { | |
return spp_nerd; | |
} | |
if (model.includes('mistral')) { | |
return spp_mistral; | |
} | |
if (model.includes('nerdstash_v2')) { | |
return spp_nerd_v2; | |
} | |
if (model.includes('yi')) { | |
return spp_yi; | |
} | |
if (model.includes('gemma')) { | |
return spp_gemma; | |
} | |
return null; | |
} | |
/** | |
* Counts the token ids for the given text using the Sentencepiece tokenizer. | |
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer | |
* @param {string} text Text to tokenize | |
* @returns { Promise<{ids: number[], count: number}> } Tokenization result | |
*/ | |
async function countSentencepieceTokens(tokenizer, text) { | |
const instance = await tokenizer?.get(); | |
// Fallback to strlen estimation | |
if (!instance) { | |
return { | |
ids: [], | |
count: Math.ceil(text.length / CHARS_PER_TOKEN), | |
}; | |
} | |
let cleaned = text; // cleanText(text); <-- cleaning text can result in an incorrect tokenization | |
let ids = instance.encodeIds(cleaned); | |
return { | |
ids, | |
count: ids.length, | |
}; | |
} | |
/** | |
* Counts the tokens in the given array of objects using the Sentencepiece tokenizer. | |
* @param {SentencePieceTokenizer} tokenizer | |
* @param {object[]} array Array of objects to tokenize | |
* @returns {Promise<number>} Number of tokens | |
*/ | |
async function countSentencepieceArrayTokens(tokenizer, array) { | |
const jsonBody = array.flatMap(x => Object.values(x)).join('\n\n'); | |
const result = await countSentencepieceTokens(tokenizer, jsonBody); | |
const num_tokens = result.count; | |
return num_tokens; | |
} | |
async function getTiktokenChunks(tokenizer, ids) { | |
const decoder = new TextDecoder(); | |
const chunks = []; | |
for (let i = 0; i < ids.length; i++) { | |
const id = ids[i]; | |
const chunkTextBytes = await tokenizer.decode(new Uint32Array([id])); | |
const chunkText = decoder.decode(chunkTextBytes); | |
chunks.push(chunkText); | |
} | |
return chunks; | |
} | |
/** | |
* Gets the token chunks for the given token IDs using the Web tokenizer. | |
* @param {Tokenizer} tokenizer Web tokenizer instance | |
* @param {number[]} ids Token IDs | |
* @returns {string[]} Token chunks | |
*/ | |
function getWebTokenizersChunks(tokenizer, ids) { | |
const chunks = []; | |
for (let i = 0, lastProcessed = 0; i < ids.length; i++) { | |
const chunkIds = ids.slice(lastProcessed, i + 1); | |
const chunkText = tokenizer.decode(new Int32Array(chunkIds)); | |
if (chunkText === '�') { | |
continue; | |
} | |
chunks.push(chunkText); | |
lastProcessed = i + 1; | |
} | |
return chunks; | |
} | |
/** | |
* Gets the tokenizer model by the model name. | |
* @param {string} requestModel Models to use for tokenization | |
* @returns {string} Tokenizer model to use | |
*/ | |
function getTokenizerModel(requestModel) { | |
if (requestModel.includes('gpt-4o')) { | |
return 'gpt-4o'; | |
} | |
if (requestModel.includes('chatgpt-4o-latest')) { | |
return 'gpt-4o'; | |
} | |
if (requestModel.includes('gpt-4-32k')) { | |
return 'gpt-4-32k'; | |
} | |
if (requestModel.includes('gpt-4')) { | |
return 'gpt-4'; | |
} | |
if (requestModel.includes('gpt-3.5-turbo-0301')) { | |
return 'gpt-3.5-turbo-0301'; | |
} | |
if (requestModel.includes('gpt-3.5-turbo')) { | |
return 'gpt-3.5-turbo'; | |
} | |
if (TEXT_COMPLETION_MODELS.includes(requestModel)) { | |
return requestModel; | |
} | |
if (requestModel.includes('claude')) { | |
return 'claude'; | |
} | |
if (requestModel.includes('llama3') || requestModel.includes('llama-3')) { | |
return 'llama3'; | |
} | |
if (requestModel.includes('llama')) { | |
return 'llama'; | |
} | |
if (requestModel.includes('mistral')) { | |
return 'mistral'; | |
} | |
if (requestModel.includes('yi')) { | |
return 'yi'; | |
} | |
if (requestModel.includes('gemma') || requestModel.includes('gemini')) { | |
return 'gemma'; | |
} | |
// default | |
return 'gpt-3.5-turbo'; | |
} | |
function getTiktokenTokenizer(model) { | |
if (tokenizersCache[model]) { | |
return tokenizersCache[model]; | |
} | |
const tokenizer = tiktoken.encoding_for_model(model); | |
console.log('Instantiated the tokenizer for', model); | |
tokenizersCache[model] = tokenizer; | |
return tokenizer; | |
} | |
/** | |
* Counts the tokens for the given messages using the WebTokenizer and Claude prompt conversion. | |
* @param {Tokenizer} tokenizer Web tokenizer | |
* @param {object[]} messages Array of messages | |
* @returns {number} Number of tokens | |
*/ | |
function countWebTokenizerTokens(tokenizer, messages) { | |
// Should be fine if we use the old conversion method instead of the messages API one i think? | |
const convertedPrompt = convertClaudePrompt(messages, false, '', false, false, '', false); | |
// Fallback to strlen estimation | |
if (!tokenizer) { | |
return Math.ceil(convertedPrompt.length / CHARS_PER_TOKEN); | |
} | |
const count = tokenizer.encode(convertedPrompt).length; | |
return count; | |
} | |
/** | |
* Creates an API handler for encoding Sentencepiece tokens. | |
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer | |
* @returns {TokenizationHandler} Handler function | |
*/ | |
function createSentencepieceEncodingHandler(tokenizer) { | |
/** | |
* Request handler for encoding Sentencepiece tokens. | |
* @param {import('express').Request} request | |
* @param {import('express').Response} response | |
*/ | |
return async function (request, response) { | |
try { | |
if (!request.body) { | |
return response.sendStatus(400); | |
} | |
const text = request.body.text || ''; | |
const instance = await tokenizer?.get(); | |
const { ids, count } = await countSentencepieceTokens(tokenizer, text); | |
const chunks = instance?.encodePieces(text); | |
return response.send({ ids, count, chunks }); | |
} catch (error) { | |
console.log(error); | |
return response.send({ ids: [], count: 0, chunks: [] }); | |
} | |
}; | |
} | |
/** | |
* Creates an API handler for decoding Sentencepiece tokens. | |
* @param {SentencePieceTokenizer} tokenizer Sentencepiece tokenizer | |
* @returns {TokenizationHandler} Handler function | |
*/ | |
function createSentencepieceDecodingHandler(tokenizer) { | |
/** | |
* Request handler for decoding Sentencepiece tokens. | |
* @param {import('express').Request} request | |
* @param {import('express').Response} response | |
*/ | |
return async function (request, response) { | |
try { | |
if (!request.body) { | |
return response.sendStatus(400); | |
} | |
const ids = request.body.ids || []; | |
const instance = await tokenizer?.get(); | |
if (!instance) throw new Error('Failed to load the Sentencepiece tokenizer'); | |
const ops = ids.map(id => instance.decodeIds([id])); | |
const chunks = await Promise.all(ops); | |
const text = chunks.join(''); | |
return response.send({ text, chunks }); | |
} catch (error) { | |
console.log(error); | |
return response.send({ text: '', chunks: [] }); | |
} | |
}; | |
} | |
/** | |
* Creates an API handler for encoding Tiktoken tokens. | |
* @param {string} modelId Tiktoken model ID | |
* @returns {TokenizationHandler} Handler function | |
*/ | |
function createTiktokenEncodingHandler(modelId) { | |
/** | |
* Request handler for encoding Tiktoken tokens. | |
* @param {import('express').Request} request | |
* @param {import('express').Response} response | |
*/ | |
return async function (request, response) { | |
try { | |
if (!request.body) { | |
return response.sendStatus(400); | |
} | |
const text = request.body.text || ''; | |
const tokenizer = getTiktokenTokenizer(modelId); | |
const tokens = Object.values(tokenizer.encode(text)); | |
const chunks = await getTiktokenChunks(tokenizer, tokens); | |
return response.send({ ids: tokens, count: tokens.length, chunks }); | |
} catch (error) { | |
console.log(error); | |
return response.send({ ids: [], count: 0, chunks: [] }); | |
} | |
}; | |
} | |
/** | |
* Creates an API handler for decoding Tiktoken tokens. | |
* @param {string} modelId Tiktoken model ID | |
* @returns {TokenizationHandler} Handler function | |
*/ | |
function createTiktokenDecodingHandler(modelId) { | |
/** | |
* Request handler for decoding Tiktoken tokens. | |
* @param {import('express').Request} request | |
* @param {import('express').Response} response | |
*/ | |
return async function (request, response) { | |
try { | |
if (!request.body) { | |
return response.sendStatus(400); | |
} | |
const ids = request.body.ids || []; | |
const tokenizer = getTiktokenTokenizer(modelId); | |
const textBytes = tokenizer.decode(new Uint32Array(ids)); | |
const text = new TextDecoder().decode(textBytes); | |
return response.send({ text }); | |
} catch (error) { | |
console.log(error); | |
return response.send({ text: '' }); | |
} | |
}; | |
} | |
/** | |
* Creates an API handler for encoding WebTokenizer tokens. | |
* @param {WebTokenizer} tokenizer WebTokenizer instance | |
* @returns {TokenizationHandler} Handler function | |
*/ | |
function createWebTokenizerEncodingHandler(tokenizer) { | |
/** | |
* Request handler for encoding WebTokenizer tokens. | |
* @param {import('express').Request} request | |
* @param {import('express').Response} response | |
*/ | |
return async function (request, response) { | |
try { | |
if (!request.body) { | |
return response.sendStatus(400); | |
} | |
const text = request.body.text || ''; | |
const instance = await tokenizer?.get(); | |
if (!instance) throw new Error('Failed to load the Web tokenizer'); | |
const tokens = Array.from(instance.encode(text)); | |
const chunks = getWebTokenizersChunks(instance, tokens); | |
return response.send({ ids: tokens, count: tokens.length, chunks }); | |
} catch (error) { | |
console.log(error); | |
return response.send({ ids: [], count: 0, chunks: [] }); | |
} | |
}; | |
} | |
/** | |
* Creates an API handler for decoding WebTokenizer tokens. | |
* @param {WebTokenizer} tokenizer WebTokenizer instance | |
* @returns {TokenizationHandler} Handler function | |
*/ | |
function createWebTokenizerDecodingHandler(tokenizer) { | |
/** | |
* Request handler for decoding WebTokenizer tokens. | |
* @param {import('express').Request} request | |
* @param {import('express').Response} response | |
* @returns {Promise<any>} | |
*/ | |
return async function (request, response) { | |
try { | |
if (!request.body) { | |
return response.sendStatus(400); | |
} | |
const ids = request.body.ids || []; | |
const instance = await tokenizer?.get(); | |
if (!instance) throw new Error('Failed to load the Web tokenizer'); | |
const chunks = getWebTokenizersChunks(instance, ids); | |
const text = instance.decode(new Int32Array(ids)); | |
return response.send({ text, chunks }); | |
} catch (error) { | |
console.log(error); | |
return response.send({ text: '', chunks: [] }); | |
} | |
}; | |
} | |
const router = express.Router(); | |
router.post('/ai21/count', jsonParser, async function (req, res) { | |
if (!req.body) return res.sendStatus(400); | |
const key = readSecret(req.user.directories, SECRET_KEYS.AI21); | |
const options = { | |
method: 'POST', | |
headers: { | |
accept: 'application/json', | |
'content-type': 'application/json', | |
Authorization: `Bearer ${key}`, | |
}, | |
body: JSON.stringify({ text: req.body[0].content }), | |
}; | |
try { | |
const response = await fetch('https://api.ai21.com/studio/v1/tokenize', options); | |
const data = await response.json(); | |
return res.send({ 'token_count': data?.tokens?.length || 0 }); | |
} catch (err) { | |
console.error(err); | |
return res.send({ 'token_count': 0 }); | |
} | |
}); | |
router.post('/google/count', jsonParser, async function (req, res) { | |
if (!req.body) return res.sendStatus(400); | |
const options = { | |
method: 'POST', | |
headers: { | |
accept: 'application/json', | |
'content-type': 'application/json', | |
}, | |
body: JSON.stringify({ contents: convertGooglePrompt(req.body, String(req.query.model)).contents }), | |
}; | |
try { | |
const reverseProxy = req.query.reverse_proxy?.toString() || ''; | |
const proxyPassword = req.query.proxy_password?.toString() || ''; | |
const apiKey = reverseProxy ? proxyPassword : readSecret(req.user.directories, SECRET_KEYS.MAKERSUITE); | |
const apiUrl = new URL(reverseProxy || API_MAKERSUITE); | |
const response = await fetch(`${apiUrl.origin}/v1beta/models/${req.query.model}:countTokens?key=${apiKey}`, options); | |
const data = await response.json(); | |
return res.send({ 'token_count': data?.totalTokens || 0 }); | |
} catch (err) { | |
console.error(err); | |
return res.send({ 'token_count': 0 }); | |
} | |
}); | |
router.post('/llama/encode', jsonParser, createSentencepieceEncodingHandler(spp_llama)); | |
router.post('/nerdstash/encode', jsonParser, createSentencepieceEncodingHandler(spp_nerd)); | |
router.post('/nerdstash_v2/encode', jsonParser, createSentencepieceEncodingHandler(spp_nerd_v2)); | |
router.post('/mistral/encode', jsonParser, createSentencepieceEncodingHandler(spp_mistral)); | |
router.post('/yi/encode', jsonParser, createSentencepieceEncodingHandler(spp_yi)); | |
router.post('/gemma/encode', jsonParser, createSentencepieceEncodingHandler(spp_gemma)); | |
router.post('/gpt2/encode', jsonParser, createTiktokenEncodingHandler('gpt2')); | |
router.post('/claude/encode', jsonParser, createWebTokenizerEncodingHandler(claude_tokenizer)); | |
router.post('/llama3/encode', jsonParser, createWebTokenizerEncodingHandler(llama3_tokenizer)); | |
router.post('/llama/decode', jsonParser, createSentencepieceDecodingHandler(spp_llama)); | |
router.post('/nerdstash/decode', jsonParser, createSentencepieceDecodingHandler(spp_nerd)); | |
router.post('/nerdstash_v2/decode', jsonParser, createSentencepieceDecodingHandler(spp_nerd_v2)); | |
router.post('/mistral/decode', jsonParser, createSentencepieceDecodingHandler(spp_mistral)); | |
router.post('/yi/decode', jsonParser, createSentencepieceDecodingHandler(spp_yi)); | |
router.post('/gemma/decode', jsonParser, createSentencepieceDecodingHandler(spp_gemma)); | |
router.post('/gpt2/decode', jsonParser, createTiktokenDecodingHandler('gpt2')); | |
router.post('/claude/decode', jsonParser, createWebTokenizerDecodingHandler(claude_tokenizer)); | |
router.post('/llama3/decode', jsonParser, createWebTokenizerDecodingHandler(llama3_tokenizer)); | |
router.post('/openai/encode', jsonParser, async function (req, res) { | |
try { | |
const queryModel = String(req.query.model || ''); | |
if (queryModel.includes('llama3') || queryModel.includes('llama-3')) { | |
const handler = createWebTokenizerEncodingHandler(llama3_tokenizer); | |
return handler(req, res); | |
} | |
if (queryModel.includes('llama')) { | |
const handler = createSentencepieceEncodingHandler(spp_llama); | |
return handler(req, res); | |
} | |
if (queryModel.includes('mistral')) { | |
const handler = createSentencepieceEncodingHandler(spp_mistral); | |
return handler(req, res); | |
} | |
if (queryModel.includes('yi')) { | |
const handler = createSentencepieceEncodingHandler(spp_yi); | |
return handler(req, res); | |
} | |
if (queryModel.includes('claude')) { | |
const handler = createWebTokenizerEncodingHandler(claude_tokenizer); | |
return handler(req, res); | |
} | |
if (queryModel.includes('gemma') || queryModel.includes('gemini')) { | |
const handler = createSentencepieceEncodingHandler(spp_gemma); | |
return handler(req, res); | |
} | |
const model = getTokenizerModel(queryModel); | |
const handler = createTiktokenEncodingHandler(model); | |
return handler(req, res); | |
} catch (error) { | |
console.log(error); | |
return res.send({ ids: [], count: 0, chunks: [] }); | |
} | |
}); | |
router.post('/openai/decode', jsonParser, async function (req, res) { | |
try { | |
const queryModel = String(req.query.model || ''); | |
if (queryModel.includes('llama3') || queryModel.includes('llama-3')) { | |
const handler = createWebTokenizerDecodingHandler(llama3_tokenizer); | |
return handler(req, res); | |
} | |
if (queryModel.includes('llama')) { | |
const handler = createSentencepieceDecodingHandler(spp_llama); | |
return handler(req, res); | |
} | |
if (queryModel.includes('mistral')) { | |
const handler = createSentencepieceDecodingHandler(spp_mistral); | |
return handler(req, res); | |
} | |
if (queryModel.includes('yi')) { | |
const handler = createSentencepieceDecodingHandler(spp_yi); | |
return handler(req, res); | |
} | |
if (queryModel.includes('claude')) { | |
const handler = createWebTokenizerDecodingHandler(claude_tokenizer); | |
return handler(req, res); | |
} | |
if (queryModel.includes('gemma') || queryModel.includes('gemini')) { | |
const handler = createSentencepieceDecodingHandler(spp_gemma); | |
return handler(req, res); | |
} | |
const model = getTokenizerModel(queryModel); | |
const handler = createTiktokenDecodingHandler(model); | |
return handler(req, res); | |
} catch (error) { | |
console.log(error); | |
return res.send({ text: '' }); | |
} | |
}); | |
router.post('/openai/count', jsonParser, async function (req, res) { | |
try { | |
if (!req.body) return res.sendStatus(400); | |
let num_tokens = 0; | |
const queryModel = String(req.query.model || ''); | |
const model = getTokenizerModel(queryModel); | |
if (model === 'claude') { | |
const instance = await claude_tokenizer.get(); | |
if (!instance) throw new Error('Failed to load the Claude tokenizer'); | |
num_tokens = countWebTokenizerTokens(instance, req.body); | |
return res.send({ 'token_count': num_tokens }); | |
} | |
if (model === 'llama3' || model === 'llama-3') { | |
const instance = await llama3_tokenizer.get(); | |
if (!instance) throw new Error('Failed to load the Llama3 tokenizer'); | |
num_tokens = countWebTokenizerTokens(instance, req.body); | |
return res.send({ 'token_count': num_tokens }); | |
} | |
if (model === 'llama') { | |
num_tokens = await countSentencepieceArrayTokens(spp_llama, req.body); | |
return res.send({ 'token_count': num_tokens }); | |
} | |
if (model === 'mistral') { | |
num_tokens = await countSentencepieceArrayTokens(spp_mistral, req.body); | |
return res.send({ 'token_count': num_tokens }); | |
} | |
if (model === 'yi') { | |
num_tokens = await countSentencepieceArrayTokens(spp_yi, req.body); | |
return res.send({ 'token_count': num_tokens }); | |
} | |
if (model === 'gemma' || model === 'gemini') { | |
num_tokens = await countSentencepieceArrayTokens(spp_gemma, req.body); | |
return res.send({ 'token_count': num_tokens }); | |
} | |
const tokensPerName = queryModel.includes('gpt-3.5-turbo-0301') ? -1 : 1; | |
const tokensPerMessage = queryModel.includes('gpt-3.5-turbo-0301') ? 4 : 3; | |
const tokensPadding = 3; | |
const tokenizer = getTiktokenTokenizer(model); | |
for (const msg of req.body) { | |
try { | |
num_tokens += tokensPerMessage; | |
for (const [key, value] of Object.entries(msg)) { | |
num_tokens += tokenizer.encode(value).length; | |
if (key == 'name') { | |
num_tokens += tokensPerName; | |
} | |
} | |
} catch { | |
console.warn('Error tokenizing message:', msg); | |
} | |
} | |
num_tokens += tokensPadding; | |
// NB: Since 2023-10-14, the GPT-3.5 Turbo 0301 model shoves in 7-9 extra tokens to every message. | |
// More details: https://community.openai.com/t/gpt-3-5-turbo-0301-showing-different-behavior-suddenly/431326/14 | |
if (queryModel.includes('gpt-3.5-turbo-0301')) { | |
num_tokens += 9; | |
} | |
// not needed for cached tokenizers | |
//tokenizer.free(); | |
res.send({ 'token_count': num_tokens }); | |
} catch (error) { | |
console.error('An error counting tokens, using fallback estimation method', error); | |
const jsonBody = JSON.stringify(req.body); | |
const num_tokens = Math.ceil(jsonBody.length / CHARS_PER_TOKEN); | |
res.send({ 'token_count': num_tokens }); | |
} | |
}); | |
router.post('/remote/kobold/count', jsonParser, async function (request, response) { | |
if (!request.body) { | |
return response.sendStatus(400); | |
} | |
const text = String(request.body.text) || ''; | |
const baseUrl = String(request.body.url); | |
try { | |
const args = { | |
method: 'POST', | |
body: JSON.stringify({ 'prompt': text }), | |
headers: { 'Content-Type': 'application/json' }, | |
}; | |
let url = String(baseUrl).replace(/\/$/, ''); | |
url += '/extra/tokencount'; | |
const result = await fetch(url, args); | |
if (!result.ok) { | |
console.log(`API returned error: ${result.status} ${result.statusText}`); | |
return response.send({ error: true }); | |
} | |
const data = await result.json(); | |
const count = data['value']; | |
const ids = data['ids'] ?? []; | |
return response.send({ count, ids }); | |
} catch (error) { | |
console.log(error); | |
return response.send({ error: true }); | |
} | |
}); | |
router.post('/remote/textgenerationwebui/encode', jsonParser, async function (request, response) { | |
if (!request.body) { | |
return response.sendStatus(400); | |
} | |
const text = String(request.body.text) || ''; | |
const baseUrl = String(request.body.url); | |
const legacyApi = Boolean(request.body.legacy_api); | |
const vllmModel = String(request.body.vllm_model) || ''; | |
try { | |
const args = { | |
method: 'POST', | |
headers: { 'Content-Type': 'application/json' }, | |
}; | |
setAdditionalHeaders(request, args, baseUrl); | |
// Convert to string + remove trailing slash + /v1 suffix | |
let url = String(baseUrl).replace(/\/$/, '').replace(/\/v1$/, ''); | |
if (legacyApi) { | |
url += '/v1/token-count'; | |
args.body = JSON.stringify({ 'prompt': text }); | |
} else { | |
switch (request.body.api_type) { | |
case TEXTGEN_TYPES.TABBY: | |
url += '/v1/token/encode'; | |
args.body = JSON.stringify({ 'text': text }); | |
break; | |
case TEXTGEN_TYPES.KOBOLDCPP: | |
url += '/api/extra/tokencount'; | |
args.body = JSON.stringify({ 'prompt': text }); | |
break; | |
case TEXTGEN_TYPES.LLAMACPP: | |
url += '/tokenize'; | |
args.body = JSON.stringify({ 'content': text }); | |
break; | |
case TEXTGEN_TYPES.VLLM: | |
url += '/tokenize'; | |
args.body = JSON.stringify({ 'model': vllmModel, 'prompt': text }); | |
break; | |
case TEXTGEN_TYPES.APHRODITE: | |
url += '/v1/tokenize'; | |
args.body = JSON.stringify({ 'prompt': text }); | |
break; | |
default: | |
url += '/v1/internal/encode'; | |
args.body = JSON.stringify({ 'text': text }); | |
break; | |
} | |
} | |
const result = await fetch(url, args); | |
if (!result.ok) { | |
console.log(`API returned error: ${result.status} ${result.statusText}`); | |
return response.send({ error: true }); | |
} | |
const data = await result.json(); | |
const count = legacyApi ? data?.results[0]?.tokens : (data?.length ?? data?.count ?? data?.value ?? data?.tokens?.length); | |
const ids = legacyApi ? [] : (data?.tokens ?? data?.ids ?? []); | |
return response.send({ count, ids }); | |
} catch (error) { | |
console.log(error); | |
return response.send({ error: true }); | |
} | |
}); | |
module.exports = { | |
TEXT_COMPLETION_MODELS, | |
getTokenizerModel, | |
getTiktokenTokenizer, | |
countWebTokenizerTokens, | |
getSentencepiceTokenizer, | |
sentencepieceTokenizers, | |
router, | |
}; | |