Spaces:
Runtime error
Runtime error
const fetch = require('node-fetch').default; | |
const { SECRET_KEYS, readSecret } = require('../endpoints/secrets'); | |
const SOURCES = { | |
'togetherai': { | |
secretKey: SECRET_KEYS.TOGETHERAI, | |
url: 'api.together.xyz', | |
model: 'togethercomputer/m2-bert-80M-32k-retrieval', | |
}, | |
'mistral': { | |
secretKey: SECRET_KEYS.MISTRALAI, | |
url: 'api.mistral.ai', | |
model: 'mistral-embed', | |
}, | |
'openai': { | |
secretKey: SECRET_KEYS.OPENAI, | |
url: 'api.openai.com', | |
model: 'text-embedding-ada-002', | |
}, | |
}; | |
/** | |
* Gets the vector for the given text batch from an OpenAI compatible endpoint. | |
* @param {string[]} texts - The array of texts to get the vector for | |
* @param {string} source - The source of the vector | |
* @param {import('../users').UserDirectoryList} directories - The directories object for the user | |
* @param {string} model - The model to use for the embedding | |
* @returns {Promise<number[][]>} - The array of vectors for the texts | |
*/ | |
async function getOpenAIBatchVector(texts, source, directories, model = '') { | |
const config = SOURCES[source]; | |
if (!config) { | |
console.log('Unknown source', source); | |
throw new Error('Unknown source'); | |
} | |
const key = readSecret(directories, config.secretKey); | |
if (!key) { | |
console.log('No API key found'); | |
throw new Error('No API key found'); | |
} | |
const url = config.url; | |
const response = await fetch(`https://${url}/v1/embeddings`, { | |
method: 'POST', | |
headers: { | |
'Content-Type': 'application/json', | |
Authorization: `Bearer ${key}`, | |
}, | |
body: JSON.stringify({ | |
input: texts, | |
model: model || config.model, | |
}), | |
}); | |
if (!response.ok) { | |
const text = await response.text(); | |
console.log('API request failed', response.statusText, text); | |
throw new Error('API request failed'); | |
} | |
const data = await response.json(); | |
if (!Array.isArray(data?.data)) { | |
console.log('API response was not an array'); | |
throw new Error('API response was not an array'); | |
} | |
// Sort data by x.index to ensure the order is correct | |
data.data.sort((a, b) => a.index - b.index); | |
const vectors = data.data.map(x => x.embedding); | |
return vectors; | |
} | |
/** | |
* Gets the vector for the given text from an OpenAI compatible endpoint. | |
* @param {string} text - The text to get the vector for | |
* @param {string} source - The source of the vector | |
* @param {import('../users').UserDirectoryList} directories - The directories object for the user | |
* @param {string} model - The model to use for the embedding | |
* @returns {Promise<number[]>} - The vector for the text | |
*/ | |
async function getOpenAIVector(text, source, directories, model = '') { | |
const vectors = await getOpenAIBatchVector([text], source, directories, model); | |
return vectors[0]; | |
} | |
module.exports = { | |
getOpenAIVector, | |
getOpenAIBatchVector, | |
}; | |