const fetch = require('node-fetch').default; const { SECRET_KEYS, readSecret } = require('../endpoints/secrets'); const SOURCES = { 'togetherai': { secretKey: SECRET_KEYS.TOGETHERAI, url: 'api.together.xyz', model: 'togethercomputer/m2-bert-80M-32k-retrieval', }, 'mistral': { secretKey: SECRET_KEYS.MISTRALAI, url: 'api.mistral.ai', model: 'mistral-embed', }, 'openai': { secretKey: SECRET_KEYS.OPENAI, url: 'api.openai.com', model: 'text-embedding-ada-002', }, }; /** * Gets the vector for the given text batch from an OpenAI compatible endpoint. * @param {string[]} texts - The array of texts to get the vector for * @param {string} source - The source of the vector * @param {import('../users').UserDirectoryList} directories - The directories object for the user * @param {string} model - The model to use for the embedding * @returns {Promise} - The array of vectors for the texts */ async function getOpenAIBatchVector(texts, source, directories, model = '') { const config = SOURCES[source]; if (!config) { console.log('Unknown source', source); throw new Error('Unknown source'); } const key = readSecret(directories, config.secretKey); if (!key) { console.log('No API key found'); throw new Error('No API key found'); } const url = config.url; const response = await fetch(`https://${url}/v1/embeddings`, { method: 'POST', headers: { 'Content-Type': 'application/json', Authorization: `Bearer ${key}`, }, body: JSON.stringify({ input: texts, model: model || config.model, }), }); if (!response.ok) { const text = await response.text(); console.log('API request failed', response.statusText, text); throw new Error('API request failed'); } const data = await response.json(); if (!Array.isArray(data?.data)) { console.log('API response was not an array'); throw new Error('API response was not an array'); } // Sort data by x.index to ensure the order is correct data.data.sort((a, b) => a.index - b.index); const vectors = data.data.map(x => x.embedding); return vectors; } /** * Gets the vector for the given text from an OpenAI compatible endpoint. * @param {string} text - The text to get the vector for * @param {string} source - The source of the vector * @param {import('../users').UserDirectoryList} directories - The directories object for the user * @param {string} model - The model to use for the embedding * @returns {Promise} - The vector for the text */ async function getOpenAIVector(text, source, directories, model = '') { const vectors = await getOpenAIBatchVector([text], source, directories, model); return vectors[0]; } module.exports = { getOpenAIVector, getOpenAIBatchVector, };