File size: 5,092 Bytes
6f5bbf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
from typing import final
import numpy as np
import librosa
import soundfile as sf
from modules.slicer2 import Slicer

class AutoSlicer:
    def __init__(self):
        self.slicer_params = {
            "threshold": -40,
            "min_length": 5000,
            "min_interval": 300,
            "hop_size": 10,
            "max_sil_kept": 500,
        }
        self.original_min_interval = self.slicer_params["min_interval"]

    def auto_slice(self, filename, input_dir, output_dir, max_sec):
        audio, sr = librosa.load(os.path.join(input_dir, filename), sr=None, mono=False)
        slicer = Slicer(sr=sr, **self.slicer_params)
        chunks = slicer.slice(audio)
        files_to_delete = []
        for i, chunk in enumerate(chunks):
            if len(chunk.shape) > 1:
                chunk = chunk.T
            output_filename = f"{os.path.splitext(filename)[0]}_{i}"
            output_filename = "".join(c for c in output_filename if c.isascii() or c == "_") + ".wav"
            output_filepath = os.path.join(output_dir, output_filename)
            sf.write(output_filepath, chunk, sr)
            #Check and re-slice audio that more than max_sec.
            while True:
                new_audio, sr = librosa.load(output_filepath, sr=None, mono=False)
                if librosa.get_duration(y=new_audio, sr=sr) <= max_sec:
                    break
                self.slicer_params["min_interval"] = self.slicer_params["min_interval"] // 2
                if self.slicer_params["min_interval"] >= self.slicer_params["hop_size"]:
                    new_chunks = Slicer(sr=sr, **self.slicer_params).slice(new_audio)
                    for j, new_chunk in enumerate(new_chunks):
                        if len(new_chunk.shape) > 1:
                            new_chunk = new_chunk.T
                        new_output_filename = f"{os.path.splitext(output_filename)[0]}_{j}.wav"
                        sf.write(os.path.join(output_dir, new_output_filename), new_chunk, sr)
                    files_to_delete.append(output_filepath)
                else:
                    break
            self.slicer_params["min_interval"] = self.original_min_interval
        for file_path in files_to_delete:
            if os.path.exists(file_path):
                os.remove(file_path)

    def merge_short(self, output_dir, max_sec, min_sec):
        short_files = []
        for filename in os.listdir(output_dir):
            filepath = os.path.join(output_dir, filename)
            if filename.endswith(".wav"):
                audio, sr = librosa.load(filepath, sr=None, mono=False)
                duration = librosa.get_duration(y=audio, sr=sr)
                if duration < min_sec:
                    short_files.append((filepath, audio, duration))
        short_files.sort(key=lambda x: x[2], reverse=True)
        merged_audio = []
        current_duration = 0
        for filepath, audio, duration in short_files:
            if current_duration + duration <= max_sec:
                merged_audio.append(audio)
                current_duration += duration
                os.remove(filepath)
            else:
                if merged_audio:
                    output_audio = np.concatenate(merged_audio, axis=-1)
                    if len(output_audio.shape) > 1:
                        output_audio = output_audio.T
                    output_filename = f"merged_{len(os.listdir(output_dir))}.wav"
                    sf.write(os.path.join(output_dir, output_filename), output_audio, sr)
                    merged_audio = [audio]
                    current_duration = duration
                    os.remove(filepath)
        if merged_audio and current_duration >= min_sec:
            output_audio = np.concatenate(merged_audio, axis=-1)
            if len(output_audio.shape) > 1:
                output_audio = output_audio.T
            output_filename = f"merged_{len(os.listdir(output_dir))}.wav"
            sf.write(os.path.join(output_dir, output_filename), output_audio, sr)
    
    def slice_count(self, input_dir, output_dir):
        orig_duration = final_duration = 0
        for file in os.listdir(input_dir):
            if file.endswith(".wav"):
                _audio, _sr = librosa.load(os.path.join(input_dir, file), sr=None, mono=False)
                orig_duration += librosa.get_duration(y=_audio, sr=_sr)
        wav_files = [file for file in os.listdir(output_dir) if file.endswith(".wav")]
        num_files = len(wav_files)
        max_duration = -1
        min_duration = float("inf")
        for file in wav_files:
            file_path = os.path.join(output_dir, file)
            audio, sr = librosa.load(file_path, sr=None, mono=False)
            duration = librosa.get_duration(y=audio, sr=sr)
            final_duration += float(duration)
            if duration > max_duration:
                max_duration = float(duration)
            if duration < min_duration:
                min_duration = float(duration)
        return num_files, max_duration, min_duration, orig_duration, final_duration