Spaces:
Running
Running
import torch | |
from torchaudio.transforms import Resample | |
from vdecoder.nsf_hifigan.models import load_config, load_model | |
from vdecoder.nsf_hifigan.nvSTFT import STFT | |
class Vocoder: | |
def __init__(self, vocoder_type, vocoder_ckpt, device = None): | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = device | |
if vocoder_type == 'nsf-hifigan': | |
self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device) | |
elif vocoder_type == 'nsf-hifigan-log10': | |
self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device) | |
else: | |
raise ValueError(f" [x] Unknown vocoder: {vocoder_type}") | |
self.resample_kernel = {} | |
self.vocoder_sample_rate = self.vocoder.sample_rate() | |
self.vocoder_hop_size = self.vocoder.hop_size() | |
self.dimension = self.vocoder.dimension() | |
def extract(self, audio, sample_rate, keyshift=0): | |
# resample | |
if sample_rate == self.vocoder_sample_rate: | |
audio_res = audio | |
else: | |
key_str = str(sample_rate) | |
if key_str not in self.resample_kernel: | |
self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device) | |
audio_res = self.resample_kernel[key_str](audio) | |
# extract | |
mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins | |
return mel | |
def infer(self, mel, f0): | |
f0 = f0[:,:mel.size(1),0] # B, n_frames | |
audio = self.vocoder(mel, f0) | |
return audio | |
class NsfHifiGAN(torch.nn.Module): | |
def __init__(self, model_path, device=None): | |
super().__init__() | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = device | |
self.model_path = model_path | |
self.model = None | |
self.h = load_config(model_path) | |
self.stft = STFT( | |
self.h.sampling_rate, | |
self.h.num_mels, | |
self.h.n_fft, | |
self.h.win_size, | |
self.h.hop_size, | |
self.h.fmin, | |
self.h.fmax) | |
def sample_rate(self): | |
return self.h.sampling_rate | |
def hop_size(self): | |
return self.h.hop_size | |
def dimension(self): | |
return self.h.num_mels | |
def extract(self, audio, keyshift=0): | |
mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins | |
return mel | |
def forward(self, mel, f0): | |
if self.model is None: | |
print('| Load HifiGAN: ', self.model_path) | |
self.model, self.h = load_model(self.model_path, device=self.device) | |
with torch.no_grad(): | |
c = mel.transpose(1, 2) | |
audio = self.model(c, f0) | |
return audio | |
class NsfHifiGANLog10(NsfHifiGAN): | |
def forward(self, mel, f0): | |
if self.model is None: | |
print('| Load HifiGAN: ', self.model_path) | |
self.model, self.h = load_model(self.model_path, device=self.device) | |
with torch.no_grad(): | |
c = 0.434294 * mel.transpose(1, 2) | |
audio = self.model(c, f0) | |
return audio |