Spaces:
Sleeping
Sleeping
File size: 15,291 Bytes
eea5553 07867c1 eea5553 4a0e691 59d356b 4a0e691 902056b 66bbfcf 902056b 4a0e691 a62a2cd 4a0e691 a62a2cd eea5553 3ab0026 3b47ee3 eea5553 07867c1 3ab0026 eea5553 46b65aa eea5553 46b65aa eea5553 46b65aa eea5553 11b0ede eea5553 88a3a03 eea5553 88a3a03 eea5553 88a3a03 eea5553 88a3a03 eea5553 88a3a03 eea5553 88a3a03 eea5553 46b65aa 08ba840 46b65aa eea5553 3ab0026 eea5553 46b65aa eea5553 d86778e eea5553 486ae62 46b65aa eea5553 46b65aa eea5553 7a5aacc 88a3a03 eea5553 902056b eea5553 902056b eea5553 902056b eea5553 46b65aa eea5553 6a4914c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import os
def list_files_tree(directory, indent=""):
items = os.listdir(directory)
for i, item in enumerate(items):
prefix = "βββ " if i == len(items) - 1 else "βββ "
print(indent + prefix + item)
item_path = os.path.join(directory, item)
if os.path.isdir(item_path):
next_indent = indent + (" " if i == len(items) - 1 else "β ")
list_files_tree(item_path, next_indent)
from huggingface_hub import snapshot_download
print("Models...")
models_id = """None1145/GPT-SoVITS-Lappland-the-Decadenza
None1145/GPT-SoVITS-Lappland
None1145/GPT-SoVITS-Theresa
None1145/GPT-SoVITS-Vulpisfoglia
None1145/GPT-SoVITS-Rosmontis
None1145/GPT-SoVITS-Theresa-Recording"""
for model_id in models_id.split("\n"):
if model_id in ["", " "]:
break
print(f"{model_id}...")
snapshot_download(repo_id=model_id, local_dir=f"./Models/{model_id}")
print(f"{model_id}!!!")
print("Models!!!")
print("PretrainedModels...")
base_model_id = "None1145/GPT-SoVITS-Base"
snapshot_download(repo_id=base_model_id, local_dir=f"./PretrainedModels/{base_model_id}")
print("PretrainedModels!!!")
list_files_tree("./")
cnhubert_base_path = f"./PretrainedModels/{base_model_id}/chinese-hubert-base"
bert_path = f"./PretrainedModels/{base_model_id}/chinese-roberta-wwm-ext-large"
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import sys, torch, numpy as np
from pathlib import Path
from pydub import AudioSegment
import librosa, math, traceback, requests, argparse, torch, multiprocessing, pandas as pd, torch.multiprocessing as mp, soundfile
from random import shuffle
from AR.utils import get_newest_ckpt
from glob import glob
from tqdm import tqdm
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
from text import cleaned_text_to_sequence
from text.cleaner import text_to_sequence, clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
import re
import logging
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
logging.getLogger('multipart').setLevel(logging.WARNING)
device = "cpu"
is_half = False
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
if(is_half==True):bert_model=bert_model.half().to(device)
else:bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
def load_model(sovits_path, gpt_path):
n_semantic = 1024
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
class DictToAttrRecursive:
def __init__(self, input_dict):
for key, value in input_dict.items():
if isinstance(value, dict):
setattr(self, key, DictToAttrRecursive(value))
else:
setattr(self, key, value)
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
ssl_model = cnhubert.get_model()
if (is_half == True):
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
if (is_half == True):
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
vq_model.load_state_dict(dict_s2["weight"], strict=False)
hz = 50
max_sec = config['data']['max_sec']
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if (is_half == True): t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
return vq_model, ssl_model, t2s_model, hps, config, hz, max_sec
def get_spepc(hps, filename):
audio=load_audio(filename,int(hps.data.sampling_rate))
audio=torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
return spec
def create_tts_fn(vq_model, ssl_model, t2s_model, hps, config, hz, max_sec):
def tts_fn(ref_wav_path, prompt_text, prompt_language, text, text_language):
t0 = ttime()
prompt_text=prompt_text.strip("\n")
prompt_language,text=prompt_language,text.strip("\n")
print(text)
# if len(text) > 50:
# return f"Error: Text is too long, ({len(text)}>50)", None
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
wav16k = torch.from_numpy(wav16k)
if(is_half==True):wav16k=wav16k.half().to(device)
else:wav16k=wav16k.to(device)
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
phones1=cleaned_text_to_sequence(phones1)
texts=text.split("\n")
audio_opt = []
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32)
for text in texts:
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phones2 = cleaned_text_to_sequence(phones2)
if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
else:bert2 = torch.zeros((1024, len(phones2))).to(bert1)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
pred_semantic,idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
top_k=config['inference']['top_k'],
early_stop_num=hz * max_sec)
t3 = ttime()
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0)
refer = get_spepc(hps, ref_wav_path)#.to(device)
if(is_half==True):refer=refer.half().to(device)
else:refer=refer.to(device)
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
return "Success", (hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16))
return tts_fn
splits={"οΌ","γ","οΌ","οΌ",",",".","?","!","~",":","οΌ","β","β¦",}
def split(todo_text):
todo_text = todo_text.replace("β¦β¦", "γ").replace("ββ", "οΌ")
if (todo_text[-1] not in splits): todo_text += "γ"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while (1):
if (i_split_head >= len_text): break
if (todo_text[i_split_head] in splits):
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def change_reference_audio(prompt_text, transcripts):
return transcripts[prompt_text]
def get_audio_duration(path):
audio = AudioSegment.from_wav(path)
return len(audio) / 1000
def select_audio_file(wav_paths):
import random
eligible_files = [path for path in wav_paths if 2 <= get_audio_duration(path) <= 5]
if eligible_files:
selected_file = random.choice(eligible_files)
else:
selected_file = random.choice(wav_paths)
return selected_file
models = []
models_info = {}
models_folder_path = "./Models/None1145"
folder_names = [name for name in os.listdir(models_folder_path) if os.path.isdir(os.path.join(models_folder_path, name))]
for folder_name in folder_names:
speaker = folder_name[11:]
models_info[speaker] = {}
models_info[speaker]["title"] = speaker
pattern = re.compile(r"s(\d+)\.pth$")
max_value = -1
max_file = None
sovits_path = f"{models_folder_path}/{folder_name}/SoVITS_weights"
for filename in os.listdir(sovits_path):
match = pattern.search(filename)
if match:
value = int(match.group(1))
if value > max_value:
max_value = value
max_file = filename
models_info[speaker]["sovits_weight"] = f"{sovits_path}/{max_file}"
pattern = re.compile(r"e(\d+)\.ckpt$")
max_value = -1
max_file = None
gpt_path = f"{models_folder_path}/{folder_name}/GPT_weights"
try:
for filename in os.listdir(gpt_path):
match = pattern.search(filename)
if match:
value = int(match.group(1))
if value > max_value:
max_value = value
max_file = filename
models_info[speaker]["gpt_weight"] = f"{gpt_path}/{max_file}"
except:
models_info[speaker]["gpt_weight"] = f"{base_model_id}/{GPT.ckpt}"
data_path = f"{models_folder_path}/{folder_name}/Data"
models_info[speaker]["transcript"] = {}
wavs = []
tmp = {}
with open(f"{data_path}/{speaker}.list", "r", encoding="utf-8") as f:
for line in f.read().split("\n"):
try:
wav = f"{models_folder_path}/{folder_name}/Data/{line.split('|')[0].split('/')[1]}"
except:
break
text = line.split("|")[3]
print(wav, text)
wavs.append(wav)
tmp[wav] = text
models_info[speaker]["transcript"][text] = wav
models_info[speaker]["example_reference"] = tmp[select_audio_file(wavs)]
print(models_info)
for speaker in models_info:
speaker_info = models_info[speaker]
title = speaker_info["title"]
sovits_weight = speaker_info["sovits_weight"]
gpt_weight = speaker_info["gpt_weight"]
model_id = "None1145/GPT-SoVITS-Base"
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, gpt_weight)
# vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, f"./PretrainedModels/{model_id}/GPT.ckpt")
models.append(
(
speaker,
title,
speaker_info["transcript"],
speaker_info["example_reference"],
create_tts_fn(
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec
)
)
)
print(models)
with gr.Blocks() as app:
with gr.Tabs():
for (name, title, transcript, example_reference, tts_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
'</div>')
with gr.Row():
with gr.Column():
with gr.Column():
prompt_text = gr.Dropdown(
label="Transcript of the Reference Audio",
value=example_reference,
choices=list(transcript.keys())
)
prompt_language = gr.Dropdown(
label="Language of the Reference Audio",
value="zh",
choices=["zh", "ja", "en"]
)
inp_ref_audio = gr.Audio(
label="Reference Audio",
type="filepath",
interactive=False,
value=transcript[example_reference]
)
transcripts_state = gr.State(value=transcript)
prompt_text.change(
fn=change_reference_audio,
inputs=[prompt_text, transcripts_state],
outputs=[inp_ref_audio]
)
# prompt_language = gr.State(value="zh")
with gr.Column():
if prompt_language.value == "zh":
initial_text = "δ½ ε₯½"
elif prompt_language.value == "ja":
initial_text = "γγγ«γ‘γ―"
elif prompt_language.value == "en":
initial_text = "Hello"
else:
initial_text = "δ½ ε₯½"
text = gr.Textbox(label="Input Text", value=initial_text)
text_language = gr.Dropdown(
label="Language",
choices=["zh", "en", "ja"],
value="zh"
)
inference_button = gr.Button("Generate", variant="primary")
om = gr.Textbox(label="Output Message")
output = gr.Audio(label="Output Audio")
inference_button.click(
fn=tts_fn,
inputs=[inp_ref_audio, prompt_text, prompt_language, text, text_language],
outputs=[om, output]
)
app.queue().launch() |