import io import gradio as gr import librosa import numpy as np import soundfile from inference.infer_tool import Svc import os def list_files_tree(directory, indent=""): items = os.listdir(directory) for i, item in enumerate(items): prefix = "└── " if i == len(items) - 1 else "├── " print(indent + prefix + item) item_path = os.path.join(directory, item) if os.path.isdir(item_path): next_indent = indent + (" " if i == len(items) - 1 else "│ ") list_files_tree(item_path, next_indent) from huggingface_hub import snapshot_download print("Models...") models_id = """None1145/So-VITS-SVC-Vulpisfoglia None1145/So-VITS-SVC-Lappland None1145/So-VITS-SVC-Lappland-the-Decadenza None1145/So-VITS-SVC-Rosmontis""" for model_id in models_id.split("\n"): if model_id in ["", " "]: break print(f"{model_id}...") snapshot_download(repo_id=model_id, local_dir=f"./Models/{model_id}") print(f"{model_id}!!!") print("Models!!!") print("PretrainedModels...") base_model_id = "None1145/So-VITS-SVC-Base" snapshot_download(repo_id=base_model_id, local_dir=f"./PretrainedModels/{base_model_id}") print("PretrainedModels!!!") list_files_tree("./") import re models_info = {} models_folder_path = "./Models/None1145" folder_names = [name for name in os.listdir(models_folder_path) if os.path.isdir(os.path.join(models_folder_path, name))] for folder_name in folder_names: speaker = folder_name[12:] pattern = re.compile(r"G_(\d+)\.pth$") max_value = -1 max_file = None models_path = f"{models_folder_path}/{folder_name}/Models" config_path = f"{models_folder_path}/{folder_name}/Configs" for filename in os.listdir(models_path): match = pattern.search(filename) if match: value = int(match.group(1)) if value > max_value: max_value = value max_file = filename models_info[speaker] = {} models_info[speaker]["model"] = f"{models_path}/{max_file}" models_info[speaker]["config"] = f"{config_path}/config.json" if os.path.exists(f"{models_path}/feature_and_index.pkl"): models_info[speaker]["cluster"] = f"{models_path}/feature_and_index.pkl" models_info[speaker]["feature_retrieval"] = True elif os.path.exists(f"{models_path}/kmeans_10000.pt"): models_info[speaker]["cluster"] = f"{models_path}/kmeans_10000.pt" models_info[speaker]["feature_retrieval"] = False else: models_info[speaker]["cluster"] = "logs/44k/kmeans_10000.pt" models_info[speaker]["feature_retrieval"] = False speakers = list(models_info.keys()) print(models_info) print(speakers) def load(speaker): return Svc(models_info[speaker]["model"], models_info[speaker]["config"], cluster_model_path=models_info[speaker]["cluster"], feature_retrieval=models_info[speaker]["feature_retrieval"]) def vc_fn(speaker, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale): model = load(speaker) if input_audio is None: return "You need to upload an audio", None sampling_rate, audio = input_audio duration = audio.shape[0] / sampling_rate audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) print(audio.shape) out_wav_path = "temp.wav" soundfile.write(out_wav_path, audio, 16000, format="wav") print( cluster_ratio, auto_f0, noise_scale) _audio = model.slice_inference(out_wav_path, speaker, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale) return "Success", (44100, _audio) app = gr.Blocks() with app: with gr.Tabs(): for speaker in speakers: with gr.TabItem(speaker): with gr.Row(): gr.Markdown( '
' f'{speaker}' '
') speaker = gr.Textbox(label="Speaker", value=speaker) vc_input3 = gr.Audio(label="Upload Audio") vc_transform = gr.Number(label="Pitch Shift (integer, can be positive or negative, number of semitones, raising an octave is +12)", value=0) cluster_ratio = gr.Number(label="Cluster Model Mixing Ratio (0-1): Defaults to 0 (clustering disabled). Improves timbre similarity but may reduce articulation clarity. Recommended value: ~0.5 if used", value=0) auto_f0 = gr.Checkbox(label="Auto f0 Prediction: Works better with the cluster model for f0 prediction but disables the pitch shift feature. (For voice conversion only; do not enable this for singing voices, as it will result in extreme off-pitch issues)", value=False) slice_db = gr.Number(label="Slicing Threshold", value=-40) noise_scale = gr.Number(label="noise_scale", value=0.4) vc_submit = gr.Button("Convert", variant="primary") vc_output1 = gr.Textbox(label="Output Message") vc_output2 = gr.Audio(label="Output Audio") vc_submit.click(vc_fn, [speaker, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale], [vc_output1, vc_output2]) app.launch()