Spaces:
Runtime error
Runtime error
Doron Adler
commited on
Commit
•
c8ddd98
1
Parent(s):
363236f
Updated model metadata, Added temperature slider
Browse files- app.py +9 -6
- model/added_tokens.json +6 -6
- model/config.json +54 -54
- model/special_tokens_map.json +6 -6
- model/tokenizer_config.json +22 -22
app.py
CHANGED
@@ -22,7 +22,7 @@ def load_model(model_name):
|
|
22 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
23 |
return model, tokenizer
|
24 |
|
25 |
-
def extend(input_text, max_size=20, top_k=50, top_p=0.95):
|
26 |
if len(input_text) == 0:
|
27 |
input_text = ""
|
28 |
|
@@ -40,9 +40,10 @@ def extend(input_text, max_size=20, top_k=50, top_p=0.95):
|
|
40 |
input_ids=input_ids,
|
41 |
max_length=max_size + len(encoded_prompt[0]),
|
42 |
top_k=top_k,
|
43 |
-
top_p=top_p,
|
|
|
44 |
do_sample=True,
|
45 |
-
repetition_penalty=
|
46 |
num_return_sequences=1)
|
47 |
|
48 |
# Remove the batch dimension when returning multiple sequences
|
@@ -100,9 +101,10 @@ if __name__ == "__main__":
|
|
100 |
|
101 |
st.sidebar.subheader("Configurable parameters")
|
102 |
|
103 |
-
max_len = st.sidebar.slider("Max-Length", 0,
|
104 |
top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
|
105 |
top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.")
|
|
|
106 |
|
107 |
if st.button("Generate Text"):
|
108 |
with st.spinner(text="Generating results..."):
|
@@ -113,12 +115,13 @@ if __name__ == "__main__":
|
|
113 |
result = extend(input_text=text_area,
|
114 |
max_size=int(max_len),
|
115 |
top_k=int(top_k),
|
116 |
-
top_p=float(top_p)
|
|
|
117 |
|
118 |
print("Done length: " + str(len(result)) + " bytes")
|
119 |
#<div class="rtl" dir="rtl" style="text-align:right;">
|
120 |
st.markdown(f"<p dir=\"rtl\" style=\"text-align:right;\"> {result} </p>", unsafe_allow_html=True)
|
121 |
-
st.write("\n\nResult length: " + str(len(result)) + " bytes\n Random seed: " + str(random_seed) + "\ntop_k: " + str(top_k) + "\ntop_p: " + str(top_p) + "\nmax_len: " + str(max_len) + "\ndevice: " + str(device) + "\nn_gpu: " + str(n_gpu))
|
122 |
print(f"\"{result}\"")
|
123 |
|
124 |
st.markdown(
|
|
|
22 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
23 |
return model, tokenizer
|
24 |
|
25 |
+
def extend(input_text, max_size=20, top_k=50, top_p=0.95, temperature=0.7):
|
26 |
if len(input_text) == 0:
|
27 |
input_text = ""
|
28 |
|
|
|
40 |
input_ids=input_ids,
|
41 |
max_length=max_size + len(encoded_prompt[0]),
|
42 |
top_k=top_k,
|
43 |
+
top_p=top_p,
|
44 |
+
temperature=temperature,
|
45 |
do_sample=True,
|
46 |
+
repetition_penalty=2.0,
|
47 |
num_return_sequences=1)
|
48 |
|
49 |
# Remove the batch dimension when returning multiple sequences
|
|
|
101 |
|
102 |
st.sidebar.subheader("Configurable parameters")
|
103 |
|
104 |
+
max_len = st.sidebar.slider("Max-Length", 0, 256, 160,help="The maximum length of the sequence to be generated.")
|
105 |
top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
|
106 |
top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.")
|
107 |
+
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 1.0, help="The value used to module the randomness of the output tokens.")
|
108 |
|
109 |
if st.button("Generate Text"):
|
110 |
with st.spinner(text="Generating results..."):
|
|
|
115 |
result = extend(input_text=text_area,
|
116 |
max_size=int(max_len),
|
117 |
top_k=int(top_k),
|
118 |
+
top_p=float(top_p),
|
119 |
+
temperature=float(temperature))
|
120 |
|
121 |
print("Done length: " + str(len(result)) + " bytes")
|
122 |
#<div class="rtl" dir="rtl" style="text-align:right;">
|
123 |
st.markdown(f"<p dir=\"rtl\" style=\"text-align:right;\"> {result} </p>", unsafe_allow_html=True)
|
124 |
+
st.write("\n\nResult length: " + str(len(result)) + " bytes\n Random seed: " + str(random_seed) + "\ntop_k: " + str(top_k) + "\ntop_p: " + str(top_p) + "\ntemperature: " + str(temperature) + "\nmax_len: " + str(max_len) + "\ndevice: " + str(device) + "\nn_gpu: " + str(n_gpu))
|
125 |
print(f"\"{result}\"")
|
126 |
|
127 |
st.markdown(
|
model/added_tokens.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
{
|
2 |
-
"<|endoftext|>": 50257,
|
3 |
-
"<|pad|>": 50260,
|
4 |
-
"<|startoftext|>": 50258,
|
5 |
-
"<|unknown|>": 50259
|
6 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 50257,
|
3 |
+
"<|pad|>": 50260,
|
4 |
+
"<|startoftext|>": 50258,
|
5 |
+
"<|unknown|>": 50259
|
6 |
+
}
|
model/config.json
CHANGED
@@ -1,54 +1,54 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "
|
3 |
-
"activation_function": "gelu_new",
|
4 |
-
"architectures": [
|
5 |
-
"GPTNeoForCausalLM"
|
6 |
-
],
|
7 |
-
"attention_dropout": 0,
|
8 |
-
"attention_layers": [
|
9 |
-
"global",
|
10 |
-
"global",
|
11 |
-
"global",
|
12 |
-
"global",
|
13 |
-
"global",
|
14 |
-
"global",
|
15 |
-
"global",
|
16 |
-
"global",
|
17 |
-
"global",
|
18 |
-
"global",
|
19 |
-
"global",
|
20 |
-
"global"
|
21 |
-
],
|
22 |
-
"attention_types": [
|
23 |
-
[
|
24 |
-
[
|
25 |
-
"global"
|
26 |
-
],
|
27 |
-
12
|
28 |
-
]
|
29 |
-
],
|
30 |
-
"bos_token_id": 50256,
|
31 |
-
"embed_dropout": 0,
|
32 |
-
"eos_token_id": 50256,
|
33 |
-
"gradient_checkpointing": false,
|
34 |
-
"hidden_size": 768,
|
35 |
-
"initializer_range": 0.02,
|
36 |
-
"intermediate_size": null,
|
37 |
-
"layer_norm_epsilon": 1e-05,
|
38 |
-
"max_position_embeddings": 2048,
|
39 |
-
"model_type": "gpt_neo",
|
40 |
-
"num_heads": 12,
|
41 |
-
"num_layers": 12,
|
42 |
-
"pad_token_id": 50256,
|
43 |
-
"resid_dropout": 0,
|
44 |
-
"summary_activation": null,
|
45 |
-
"summary_first_dropout": 0.1,
|
46 |
-
"summary_proj_to_labels": true,
|
47 |
-
"summary_type": "cls_index",
|
48 |
-
"summary_use_proj": true,
|
49 |
-
"torch_dtype": "float32",
|
50 |
-
"transformers_version": "4.21.0",
|
51 |
-
"use_cache": true,
|
52 |
-
"vocab_size": 50261,
|
53 |
-
"window_size": 256
|
54 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./FantasyChildrenScifi-hebrew-gpt_neo-small/model",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPTNeoForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0,
|
8 |
+
"attention_layers": [
|
9 |
+
"global",
|
10 |
+
"global",
|
11 |
+
"global",
|
12 |
+
"global",
|
13 |
+
"global",
|
14 |
+
"global",
|
15 |
+
"global",
|
16 |
+
"global",
|
17 |
+
"global",
|
18 |
+
"global",
|
19 |
+
"global",
|
20 |
+
"global"
|
21 |
+
],
|
22 |
+
"attention_types": [
|
23 |
+
[
|
24 |
+
[
|
25 |
+
"global"
|
26 |
+
],
|
27 |
+
12
|
28 |
+
]
|
29 |
+
],
|
30 |
+
"bos_token_id": 50256,
|
31 |
+
"embed_dropout": 0,
|
32 |
+
"eos_token_id": 50256,
|
33 |
+
"gradient_checkpointing": false,
|
34 |
+
"hidden_size": 768,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"intermediate_size": null,
|
37 |
+
"layer_norm_epsilon": 1e-05,
|
38 |
+
"max_position_embeddings": 2048,
|
39 |
+
"model_type": "gpt_neo",
|
40 |
+
"num_heads": 12,
|
41 |
+
"num_layers": 12,
|
42 |
+
"pad_token_id": 50256,
|
43 |
+
"resid_dropout": 0,
|
44 |
+
"summary_activation": null,
|
45 |
+
"summary_first_dropout": 0.1,
|
46 |
+
"summary_proj_to_labels": true,
|
47 |
+
"summary_type": "cls_index",
|
48 |
+
"summary_use_proj": true,
|
49 |
+
"torch_dtype": "float32",
|
50 |
+
"transformers_version": "4.21.0",
|
51 |
+
"use_cache": true,
|
52 |
+
"vocab_size": 50261,
|
53 |
+
"window_size": 256
|
54 |
+
}
|
model/special_tokens_map.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "<|startoftext|>",
|
3 |
-
"eos_token": "<|endoftext|>",
|
4 |
-
"pad_token": "<|pad|>",
|
5 |
-
"unk_token": "<unk>"
|
6 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|startoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"pad_token": "<|pad|>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
model/tokenizer_config.json
CHANGED
@@ -1,22 +1,22 @@
|
|
1 |
-
{
|
2 |
-
"add_bos_token": false,
|
3 |
-
"add_prefix_space": false,
|
4 |
-
"bos_token": "<|startoftext|>",
|
5 |
-
"do_lower_case": false,
|
6 |
-
"eos_token": "<|endoftext|>",
|
7 |
-
"errors": "replace",
|
8 |
-
"full_tokenizer_file": null,
|
9 |
-
"max_len": 1024,
|
10 |
-
"name_or_path": "
|
11 |
-
"pad_token": "<|pad|>",
|
12 |
-
"special_tokens_map_file": "special_tokens_map.json",
|
13 |
-
"tokenizer_class": "GPT2Tokenizer",
|
14 |
-
"unk_token": {
|
15 |
-
"__type": "AddedToken",
|
16 |
-
"content": "<|endoftext|>",
|
17 |
-
"lstrip": false,
|
18 |
-
"normalized": true,
|
19 |
-
"rstrip": false,
|
20 |
-
"single_word": false
|
21 |
-
}
|
22 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"bos_token": "<|startoftext|>",
|
5 |
+
"do_lower_case": false,
|
6 |
+
"eos_token": "<|endoftext|>",
|
7 |
+
"errors": "replace",
|
8 |
+
"full_tokenizer_file": null,
|
9 |
+
"max_len": 1024,
|
10 |
+
"name_or_path": "./FantasyChildrenScifi-hebrew-gpt_neo-small/model",
|
11 |
+
"pad_token": "<|pad|>",
|
12 |
+
"special_tokens_map_file": "special_tokens_map.json",
|
13 |
+
"tokenizer_class": "GPT2Tokenizer",
|
14 |
+
"unk_token": {
|
15 |
+
"__type": "AddedToken",
|
16 |
+
"content": "<|endoftext|>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": true,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
}
|
22 |
+
}
|