from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr tokenizer = AutoTokenizer.from_pretrained("merve/chatgpt-prompts-bart-long") model = AutoModelForSeq2SeqLM.from_pretrained("merve/chatgpt-prompts-bart-long", from_tf=True) def generate(prompt): profession = "example profession" # Replace with your desired profession description = "example" # Replace with your desired description formatted_prompt = f"You are an expert at {profession} who always {description}.\n\n" batch = tokenizer(formatted_prompt, return_tensors="pt") generated_ids = model.generate(batch["input_ids"], max_length=200, num_return_sequences=1) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return output[0] input_component = gr.Textbox(label="Input a persona, e.g. photographer", value="photographer") output_component = gr.Textbox(label="Prompt") examples = [["photographer"], ["developer"]] description = "This app generates ChatGPT prompts. Enter a persona you want the prompt to be based on." gr.Interface(generate, inputs=input_component, outputs=output_component, examples=examples, title="👨🏻‍🎤 ChatGPT Prompt Generator 👨🏻‍🎤", description=description).launch()