Not-Grim-Refer p4vv37 commited on
Commit
2ca9e8d
0 Parent(s):

Duplicate from p4vv37/CodeBERT_CodeReviewer

Browse files

Co-authored-by: Paweł <p4vv37@users.noreply.huggingface.co>

Files changed (4) hide show
  1. .gitattributes +34 -0
  2. README.md +14 -0
  3. app.py +287 -0
  4. requirements.txt +4 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: CodeBERT CodeReviewer
3
+ emoji: 😻
4
+ colorFrom: pink
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 3.23.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ duplicated_from: p4vv37/CodeBERT_CodeReviewer
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ from torch import nn
4
+ from torch.nn import CrossEntropyLoss
5
+ from transformers import AutoTokenizer, T5ForConditionalGeneration, AutoModelForSeq2SeqLM, T5Config
6
+ import torch
7
+
8
+ MAX_SOURCE_LENGTH = 512
9
+
10
+
11
+ class ReviewerModel(T5ForConditionalGeneration):
12
+
13
+ def __init__(self, config):
14
+ super().__init__(config)
15
+ self.cls_head = nn.Linear(self.config.d_model, 2, bias=True)
16
+ self.init()
17
+
18
+ def init(self):
19
+ nn.init.xavier_uniform_(self.lm_head.weight)
20
+ factor = self.config.initializer_factor
21
+ self.cls_head.weight.data.normal_(mean=0.0, \
22
+ std=factor * ((self.config.d_model) ** -0.5))
23
+ self.cls_head.bias.data.zero_()
24
+
25
+ def forward(
26
+ self, *argv, **kwargs
27
+ ):
28
+ r"""
29
+ Doc from Huggingface transformers:
30
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
31
+ Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ...,
32
+ config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for
33
+ labels in ``[0, ..., config.vocab_size]``
34
+ Returns:
35
+ Examples::
36
+ >>> from transformers import T5Tokenizer, T5ForConditionalGeneration
37
+ >>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
38
+ >>> model = T5ForConditionalGeneration.from_pretrained('t5-small')
39
+ >>> # training
40
+ >>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
41
+ >>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids
42
+ >>> outputs = model(input_ids=input_ids, labels=labels)
43
+ >>> loss = outputs.loss
44
+ >>> logits = outputs.logits
45
+ >>> # inference
46
+ >>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
47
+ >>> outputs = model.generate(input_ids)
48
+ >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
49
+ >>> # studies have shown that owning a dog is good for you.
50
+ """
51
+ if "cls" in kwargs:
52
+ assert (
53
+ "input_ids" in kwargs and \
54
+ "labels" in kwargs and \
55
+ "attention_mask" in kwargs
56
+ )
57
+ return self.cls(
58
+ input_ids=kwargs["input_ids"],
59
+ labels=kwargs["labels"],
60
+ attention_mask=kwargs["attention_mask"],
61
+ )
62
+ if "input_labels" in kwargs:
63
+ assert (
64
+ "input_ids" in kwargs and \
65
+ "input_labels" in kwargs and \
66
+ "decoder_input_ids" in kwargs and \
67
+ "attention_mask" in kwargs and \
68
+ "decoder_attention_mask" in kwargs
69
+ ), "Please give these arg keys."
70
+ input_ids = kwargs["input_ids"]
71
+ input_labels = kwargs["input_labels"]
72
+ decoder_input_ids = kwargs["decoder_input_ids"]
73
+ attention_mask = kwargs["attention_mask"]
74
+ decoder_attention_mask = kwargs["decoder_attention_mask"]
75
+ if "encoder_loss" not in kwargs:
76
+ encoder_loss = True
77
+ else:
78
+ encoder_loss = kwargs["encoder_loss"]
79
+ return self.review_forward(input_ids, input_labels, decoder_input_ids, attention_mask,
80
+ decoder_attention_mask, encoder_loss)
81
+ return super().forward(*argv, **kwargs)
82
+
83
+ def cls(
84
+ self,
85
+ input_ids,
86
+ labels,
87
+ attention_mask,
88
+ ):
89
+ encoder_outputs = self.encoder( \
90
+ input_ids=input_ids,
91
+ attention_mask=attention_mask,
92
+ output_attentions=False,
93
+ return_dict=False
94
+ )
95
+ hidden_states = encoder_outputs[0]
96
+ first_hidden = hidden_states[:, 0, :]
97
+ first_hidden = nn.Dropout(0.3)(first_hidden)
98
+ logits = self.cls_head(first_hidden)
99
+ loss_fct = CrossEntropyLoss()
100
+ if labels != None:
101
+ loss = loss_fct(logits, labels)
102
+ return loss
103
+ return logits
104
+
105
+ def review_forward(
106
+ self,
107
+ input_ids,
108
+ input_labels,
109
+ decoder_input_ids,
110
+ attention_mask,
111
+ decoder_attention_mask,
112
+ encoder_loss=True
113
+ ):
114
+ encoder_outputs = self.encoder( \
115
+ input_ids=input_ids,
116
+ attention_mask=attention_mask,
117
+ output_attentions=False,
118
+ return_dict=False
119
+ )
120
+ hidden_states = encoder_outputs[0]
121
+ decoder_inputs = self._shift_right(decoder_input_ids)
122
+ # Decode
123
+ decoder_outputs = self.decoder(
124
+ input_ids=decoder_inputs,
125
+ attention_mask=decoder_attention_mask,
126
+ encoder_hidden_states=hidden_states,
127
+ encoder_attention_mask=attention_mask,
128
+ output_attentions=False,
129
+ return_dict=False
130
+ )
131
+ sequence_output = decoder_outputs[0]
132
+ if self.config.tie_word_embeddings: # this is True default
133
+ sequence_output = sequence_output * (self.model_dim ** -0.5)
134
+ if encoder_loss:
135
+ # print(self.encoder.get_input_embeddings().weight.shape)
136
+ cls_logits = nn.functional.linear(hidden_states, self.encoder.get_input_embeddings().weight)
137
+ # cls_logits = self.cls_head(hidden_states)
138
+ lm_logits = self.lm_head(sequence_output)
139
+ if decoder_input_ids is not None:
140
+ lm_loss_fct = CrossEntropyLoss(ignore_index=0) # Warning: PAD_ID should be 0
141
+ loss = lm_loss_fct(lm_logits.view(-1, lm_logits.size(-1)), decoder_input_ids.view(-1))
142
+ if encoder_loss and input_labels is not None:
143
+ cls_loss_fct = CrossEntropyLoss(ignore_index=-100)
144
+ loss += cls_loss_fct(cls_logits.view(-1, cls_logits.size(-1)), input_labels.view(-1))
145
+ return loss
146
+ return cls_logits, lm_logits
147
+
148
+
149
+ def prepare_models():
150
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/codereviewer")
151
+
152
+ tokenizer.special_dict = {
153
+ f"<e{i}>": tokenizer.get_vocab()[f"<e{i}>"] for i in range(99, -1, -1)
154
+ }
155
+ tokenizer.mask_id = tokenizer.get_vocab()["<mask>"]
156
+ tokenizer.bos_id = tokenizer.get_vocab()["<s>"]
157
+ tokenizer.pad_id = tokenizer.get_vocab()["<pad>"]
158
+ tokenizer.eos_id = tokenizer.get_vocab()["</s>"]
159
+ tokenizer.msg_id = tokenizer.get_vocab()["<msg>"]
160
+ tokenizer.keep_id = tokenizer.get_vocab()["<keep>"]
161
+ tokenizer.add_id = tokenizer.get_vocab()["<add>"]
162
+ tokenizer.del_id = tokenizer.get_vocab()["<del>"]
163
+ tokenizer.start_id = tokenizer.get_vocab()["<start>"]
164
+ tokenizer.end_id = tokenizer.get_vocab()["<end>"]
165
+
166
+ config = T5Config.from_pretrained("microsoft/codereviewer")
167
+ model = ReviewerModel.from_pretrained("microsoft/codereviewer", config=config)
168
+
169
+ model.eval()
170
+ return tokenizer, model
171
+
172
+
173
+ def pad_assert(tokenizer, source_ids):
174
+ source_ids = source_ids[:MAX_SOURCE_LENGTH - 2]
175
+ source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
176
+ pad_len = MAX_SOURCE_LENGTH - len(source_ids)
177
+ source_ids += [tokenizer.pad_id] * pad_len
178
+ assert len(source_ids) == MAX_SOURCE_LENGTH, "Not equal length."
179
+ return source_ids
180
+
181
+
182
+ def encode_diff(tokenizer, diff, msg, source):
183
+ difflines = diff.split("\n")[1:] # remove start @@
184
+ difflines = [line for line in difflines if len(line.strip()) > 0]
185
+ map_dic = {"-": 0, "+": 1, " ": 2}
186
+
187
+ def f(s):
188
+ if s in map_dic:
189
+ return map_dic[s]
190
+ else:
191
+ return 2
192
+
193
+ labels = [f(line[0]) for line in difflines]
194
+ difflines = [line[1:].strip() for line in difflines]
195
+ inputstr = "<s>" + source + "</s>"
196
+ inputstr += "<msg>" + msg
197
+ for label, line in zip(labels, difflines):
198
+ if label == 1:
199
+ inputstr += "<add>" + line
200
+ elif label == 0:
201
+ inputstr += "<del>" + line
202
+ else:
203
+ inputstr += "<keep>" + line
204
+ source_ids = tokenizer.encode(inputstr, max_length=MAX_SOURCE_LENGTH, truncation=True)[1:-1]
205
+ source_ids = pad_assert(tokenizer, source_ids)
206
+ return source_ids
207
+
208
+
209
+ class FileDiffs(object):
210
+ def __init__(self, diff_string):
211
+ diff_array = diff_string.split("\n")
212
+ self.file_name = diff_array[0]
213
+ self.file_path = self.file_name.split("a/", 1)[1].rsplit("b/", 1)[0]
214
+ self.diffs = list()
215
+ for line in diff_array[4:]:
216
+ if line.startswith("@@"):
217
+ self.diffs.append(str())
218
+ self.diffs[-1] += "\n" + line
219
+
220
+
221
+ def review_commit(user="p4vv37", repository="ueflow", commit="610a8c7b02b946bc9e5e26e6dacbba0e2abba259"):
222
+ tokenizer, model = prepare_models()
223
+
224
+ # Get diff and commit metadata from GitHub API
225
+ commit_metadata = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}").json()
226
+ msg = commit_metadata["commit"]["message"]
227
+ diff_data = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}",
228
+ headers={"Accept": "application/vnd.github.diff"})
229
+ code_diff = diff_data.text
230
+
231
+ # Parse diff into FileDiffs objects
232
+ files_diffs = list()
233
+ for file in code_diff.split("diff --git"):
234
+ if len(file) > 0:
235
+ fd = FileDiffs(file)
236
+ files_diffs.append(fd)
237
+
238
+ # Generate comments for each diff
239
+ output = ""
240
+ for fd in files_diffs:
241
+ output += F"File:{fd.file_path}\n"
242
+ source = requests.get(F"https://raw.githubusercontent.com/{user}/{repository}/^{commit}/{fd.file_path}").text
243
+
244
+ for diff in fd.diffs:
245
+ inputs = torch.tensor([encode_diff(tokenizer, diff, msg, source)], dtype=torch.long).to("cpu")
246
+ inputs_mask = inputs.ne(tokenizer.pad_id)
247
+ logits = model(
248
+ input_ids=inputs,
249
+ cls=True,
250
+ attention_mask=inputs_mask,
251
+ labels=None,
252
+ use_cache=True,
253
+ num_beams=5,
254
+ early_stopping=True,
255
+ max_length=100
256
+ )
257
+ needs_review = torch.argmax(logits, dim=-1).cpu().numpy()[0]
258
+ if not needs_review:
259
+ continue
260
+ preds = model.generate(inputs,
261
+ attention_mask=inputs_mask,
262
+ use_cache=True,
263
+ num_beams=5,
264
+ early_stopping=True,
265
+ max_length=100,
266
+ num_return_sequences=2
267
+ )
268
+ preds = list(preds.cpu().numpy())
269
+ pred_nls = [tokenizer.decode(_id[2:], skip_special_tokens=True, clean_up_tokenization_spaces=False)
270
+ for _id in preds]
271
+ output += diff + "\n#######\nComment:\n#######\n" + pred_nls[0] + "\n#######\n"
272
+ return output
273
+
274
+
275
+ description = "An interface for running " \
276
+ "\"Microsoft CodeBERT CodeReviewer: Pre-Training for Automating Code Review Activities.\" " \
277
+ "(microsoft/codereviewer) on GitHub commits."
278
+ examples = [
279
+ ["p4vv37", "ueflow", "610a8c7b02b946bc9e5e26e6dacbba0e2abba259"],
280
+ ["microsoft", "vscode", "378b0d711f6b82ac59b47fb246906043a6fb995a"],
281
+ ]
282
+ iface = gr.Interface(fn=review_commit,
283
+ description=description,
284
+ inputs=["text", "text", "text"],
285
+ outputs="text",
286
+ examples=examples)
287
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ transformers
2
+ requests
3
+ gradio
4
+ torch