import gradio as gr import gradio.helpers from datasets import load_dataset import base64 import re import os import random import requests import time from PIL import Image from io import BytesIO from typing import Tuple import user_history from share_btn import community_icon_html, loading_icon_html, share_js # Define constants for map region size and overlay shapes MAP_REGION_SIZE = 64 OVERLAY_SHAPES = ["square", "circle", "triangle"] # Load pre-trained AI model for map concept generation model = load_model("path/to/pretrained/model") # Define function for generating map layout concepts using AI model def generate_map_concept(text_description): # Preprocess text description processed_text = preprocess_text(text_description) # Generate map layout concept using AI model map_concept = model.generate(processed_text) return map_concept # Define Gradio interface components def gradio_ui(): with gr.Group(): with gr.Box(): with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): with gr.Column(): num_regions = gr.Number(label="Number of Regions", value=1, min=1, max=10, step=1) overlay_shape = gr.Radio(label="Overlay Shape", choices=OVERLAY_SHAPES, value=OVERLAY_SHAPES[0]) text_description = gr.Textbox( label="Enter map description", show_label=True, max_lines=5, placeholder="Enter a description for the map layout", ) generate_btn = gr.Button("Generate Map Concept") with gr.Column(): map_concept_output = gr.Image(label="Generated Map Concept", shape=(MAP_REGION_SIZE * 10, MAP_REGION_SIZE * 10)) # Set up event listeners generate_btn.click(fn=generate_map_concept, inputs=text_description, outputs=map_concept_output) # Launch Gradio interface gr.Interface(gradio_ui, theme="darkdefault").launch() # Run the Gradio interface gradio_ui()