code-explainer / app.py
Not-Grim-Refer's picture
Update app.py
4ef486c
import torch
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load pretrained model and tokenizer
model_name = "zonghaoyang/DistilRoBERTa-base"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define function to analyze input code
def analyze_code(input_code):
code_str = " ".join(input_code.split())
sentences = [s.strip() for s in code_str.split(".") if s.strip()]
variables = []
functions = []
logic = []
for sentence in sentences:
if "=" in sentence:
variables.append(sentence.split("=")[0].strip())
elif "(" in sentence:
functions.append(sentence.split("(")[0].strip())
else:
logic.append(sentence)
return {"variables": variables, "functions": functions, "logic": logic}
# Define function to generate prompt from analyzed code
def generate_prompt(code_analysis):
prompt = f"Generate code with the following: \n\n"
prompt += f"Variables: {', '.join(code_analysis['variables'])} \n\n"
prompt += f"Functions: {', '.join(code_analysis['functions'])} \n\n"
prompt += f"Logic: {' '.join(code_analysis['logic'])}"
return prompt
# Generate code from model and prompt
def generate_code(prompt):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
generated_ids = model.generate(input_ids, max_length=100, num_beams=5, early_stopping=True)
generated_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_code
# Suggest improvements to code
def suggest_improvements(code):
suggestions = ["Use more descriptive variable names", "Add comments to explain complex logic", "Refactor duplicated code into functions"]
return suggestions
# Main function to integrate the other functions and generate_code
def main_function(input_code):
code_analysis = analyze_code(input_code)
prompt = generate_prompt(code_analysis)
generated_code = generate_code(prompt)
improvements = suggest_improvements(input_code)
return generated_code, improvements
# Create Gradio interface
iface = gr.Interface(
fn=main_function,
inputs=gr.inputs.Textbox(lines=5, label="Input Code"),
outputs=[gr.outputs.Textbox(lines=5, label="Generated Code"), gr.outputs.Textbox(lines=5, label="Suggested Improvements")]
)
# Launch Gradio interface
iface.launch()