Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Load pretrained model and tokenizer | |
model_name = "zonghaoyang/DistilRoBERTa-base" | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Define function to analyze input code | |
def analyze_code(input_code): | |
code_str = " ".join(input_code.split()) | |
sentences = [s.strip() for s in code_str.split(".") if s.strip()] | |
variables = [] | |
functions = [] | |
logic = [] | |
for sentence in sentences: | |
if "=" in sentence: | |
variables.append(sentence.split("=")[0].strip()) | |
elif "(" in sentence: | |
functions.append(sentence.split("(")[0].strip()) | |
else: | |
logic.append(sentence) | |
return {"variables": variables, "functions": functions, "logic": logic} | |
# Define function to generate prompt from analyzed code | |
def generate_prompt(code_analysis): | |
prompt = f"Generate code with the following: \n\n" | |
prompt += f"Variables: {', '.join(code_analysis['variables'])} \n\n" | |
prompt += f"Functions: {', '.join(code_analysis['functions'])} \n\n" | |
prompt += f"Logic: {' '.join(code_analysis['logic'])}" | |
return prompt | |
# Generate code from model and prompt | |
def generate_code(prompt): | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
generated_ids = model.generate(input_ids, max_length=100, num_beams=5, early_stopping=True) | |
generated_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return generated_code | |
# Suggest improvements to code | |
def suggest_improvements(code): | |
suggestions = ["Use more descriptive variable names", "Add comments to explain complex logic", "Refactor duplicated code into functions"] | |
return suggestions | |
# Main function to integrate the other functions and generate_code | |
def main_function(input_code): | |
code_analysis = analyze_code(input_code) | |
prompt = generate_prompt(code_analysis) | |
generated_code = generate_code(prompt) | |
improvements = suggest_improvements(input_code) | |
return generated_code, improvements | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=main_function, | |
inputs=gr.inputs.Textbox(lines=5, label="Input Code"), | |
outputs=[gr.outputs.Textbox(lines=5, label="Generated Code"), gr.outputs.Textbox(lines=5, label="Suggested Improvements")] | |
) | |
# Launch Gradio interface | |
iface.launch() |