|
from PIL import Image |
|
from transformers import ViTFeatureExtractor, ViTForImageClassification |
|
import warnings |
|
import requests |
|
import gradio as gr |
|
import os |
|
|
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
model_name = "google/vit-base-patch16-224" |
|
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name) |
|
model = ViTForImageClassification.from_pretrained(model_name) |
|
|
|
|
|
api_key = os.getenv('api_key') |
|
|
|
def identify_image(image_path): |
|
"""Identify the food item in the image.""" |
|
image = Image.open(image_path) |
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class_idx = logits.argmax(-1).item() |
|
predicted_label = model.config.id2label[predicted_class_idx] |
|
food_name = predicted_label.split(',')[0] |
|
return food_name |
|
|
|
def get_calories(food_name): |
|
"""Get the calorie information of the identified food item.""" |
|
api_url = 'https://api.api-ninjas.com/v1/nutrition?query={}'.format(food_name) |
|
response = requests.get(api_url, headers={'X-Api-Key': api_key}) |
|
if response.status_code == requests.codes.ok: |
|
nutrition_info = response.json() |
|
else: |
|
nutrition_info = {"Error": response.status_code, "Message": response.text} |
|
return nutrition_info |
|
|
|
def format_nutrition_info(nutrition_info): |
|
"""Format the nutritional information into an HTML table.""" |
|
if "Error" in nutrition_info: |
|
return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}" |
|
|
|
if len(nutrition_info) == 0: |
|
return "No nutritional information found." |
|
|
|
nutrition_data = nutrition_info[0] |
|
table = f""" |
|
<table border="1" style="width: 100%; border-collapse: collapse;"> |
|
<tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr> |
|
<tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr> |
|
<tr> |
|
<td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td> |
|
<td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td> |
|
<td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td> |
|
<td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td> |
|
<td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td> |
|
<td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td> |
|
<td></td><td></td> |
|
</tr> |
|
</table> |
|
""" |
|
return table |
|
|
|
def main_process(image_path): |
|
"""Identify the food item and fetch its calorie information.""" |
|
food_name = identify_image(image_path) |
|
nutrition_info = get_calories(food_name) |
|
formatted_nutrition_info = format_nutrition_info(nutrition_info) |
|
return formatted_nutrition_info |
|
|
|
|
|
def gradio_interface(image): |
|
formatted_nutrition_info = main_process(image) |
|
return formatted_nutrition_info |
|
|
|
|
|
iface = gr.Interface( |
|
fn=gradio_interface, |
|
inputs=gr.Image(type="filepath"), |
|
outputs="html", |
|
title="Food Identification and Nutrition Info", |
|
description="Upload an image of food to get nutritional information.", |
|
allow_flagging="never" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |