Spaces:
Sleeping
Sleeping
Ntabukiraniro
commited on
Commit
•
1acb220
1
Parent(s):
611452d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
# Set CUDA environment variable and install llama-cpp-python
|
3 |
+
# llama-cpp-python is a python binding for llama.cpp library which enables LLM inference in pure C/C++
|
4 |
+
os.environ["CUDACXX"] = "/usr/local/cuda/bin/nvcc"
|
5 |
+
os.system('python -m unidic download')
|
6 |
+
os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python==0.2.11 --verbose')
|
7 |
+
|
8 |
+
|
9 |
+
# Third-party library imports
|
10 |
+
from faster_whisper import WhisperModel
|
11 |
+
import gradio as gr
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
from llama_cpp import Llama
|
14 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
15 |
+
from TTS.tts.models.xtts import Xtts
|
16 |
+
from TTS.utils.generic_utils import get_user_data_dir
|
17 |
+
from TTS.utils.manage import ModelManager
|
18 |
+
|
19 |
+
# Local imports
|
20 |
+
from utils import get_sentence, generate_speech_for_sentence, wave_header_chunk
|
21 |
+
|
22 |
+
# Load Whisper ASR model
|
23 |
+
print("Loading Whisper ASR")
|
24 |
+
whisper_model = WhisperModel("large-v3", device="cuda", compute_type="float16")
|
25 |
+
|
26 |
+
# Load Mistral LLM
|
27 |
+
print("Loading Mistral LLM")
|
28 |
+
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", local_dir=".", filename="mistral-7b-instruct-v0.1.Q5_K_M.gguf")
|
29 |
+
mistral_model_path="./mistral-7b-instruct-v0.1.Q5_K_M.gguf"
|
30 |
+
mistral_llm = Llama(model_path=mistral_model_path,n_gpu_layers=35,max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=False)
|
31 |
+
|
32 |
+
|
33 |
+
# Load XTTS Model
|
34 |
+
print("Loading XTTS model")
|
35 |
+
os.environ["COQUI_TOS_AGREED"] = "1"
|
36 |
+
tts_model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
|
37 |
+
ModelManager().download_model(tts_model_name)
|
38 |
+
tts_model_path = os.path.join(get_user_data_dir("tts"), tts_model_name.replace("/", "--"))
|
39 |
+
config = XttsConfig()
|
40 |
+
config.load_json(os.path.join(tts_model_path, "config.json"))
|
41 |
+
xtts_model = Xtts.init_from_config(config)
|
42 |
+
xtts_model.load_checkpoint(
|
43 |
+
config,
|
44 |
+
checkpoint_path=os.path.join(tts_model_path, "model.pth"),
|
45 |
+
vocab_path=os.path.join(tts_model_path, "vocab.json"),
|
46 |
+
eval=True,
|
47 |
+
use_deepspeed=True,
|
48 |
+
)
|
49 |
+
xtts_model.cuda()
|
50 |
+
|
51 |
+
###### Set up Gradio Interface ######
|
52 |
+
|
53 |
+
with gr.Blocks(title="Voice chat with LLM") as demo:
|
54 |
+
DESCRIPTION = """# Voice chat with LLM"""
|
55 |
+
gr.Markdown(DESCRIPTION)
|
56 |
+
|
57 |
+
# Define chatbot component
|
58 |
+
chatbot = gr.Chatbot(
|
59 |
+
value=[(None, "Hi friend, I'm Liya Interviewer and I'm here to help you with that today?")], # Initial greeting from the chatbot
|
60 |
+
elem_id="chatbot",
|
61 |
+
avatar_images=("examples/hf-logo.png", "examples/ai-chat-logo.png"),
|
62 |
+
bubble_full_width=False,
|
63 |
+
)
|
64 |
+
|
65 |
+
# Define chatbot voice component
|
66 |
+
VOICES = ["female", "male"]
|
67 |
+
with gr.Row():
|
68 |
+
chatbot_voice = gr.Dropdown(
|
69 |
+
label="Voice of the Chatbot",
|
70 |
+
info="How should Chatbot talk like",
|
71 |
+
choices=VOICES,
|
72 |
+
max_choices=1,
|
73 |
+
value=VOICES[0],
|
74 |
+
)
|
75 |
+
|
76 |
+
# Define text and audio record input components
|
77 |
+
with gr.Row():
|
78 |
+
txt_box = gr.Textbox(
|
79 |
+
scale=3,
|
80 |
+
show_label=False,
|
81 |
+
placeholder="Enter text and press enter, or speak to your microphone",
|
82 |
+
container=False,
|
83 |
+
interactive=True,
|
84 |
+
)
|
85 |
+
audio_record = gr.Audio(source="microphone", type="filepath", scale=4)
|
86 |
+
|
87 |
+
# Define generated audio playback component
|
88 |
+
with gr.Row():
|
89 |
+
sentence = gr.Textbox(visible=False)
|
90 |
+
audio_playback = gr.Audio(
|
91 |
+
value=None,
|
92 |
+
label="Generated audio response",
|
93 |
+
streaming=True,
|
94 |
+
autoplay=True,
|
95 |
+
interactive=False,
|
96 |
+
show_label=True,
|
97 |
+
)
|
98 |
+
|
99 |
+
# Will be triggered on text submit (will send to generate_speech)
|
100 |
+
def add_text(chatbot_history, text):
|
101 |
+
chatbot_history = [] if chatbot_history is None else chatbot_history
|
102 |
+
chatbot_history = chatbot_history + [(text, None)]
|
103 |
+
return chatbot_history, gr.update(value="", interactive=False)
|
104 |
+
|
105 |
+
# Will be triggered on voice submit (will transribe and send to generate_speech)
|
106 |
+
def add_audio(chatbot_history, audio):
|
107 |
+
chatbot_history = [] if chatbot_history is None else chatbot_history
|
108 |
+
# get result from whisper and strip it to delete begin and end space
|
109 |
+
response, _ = whisper_model.transcribe(audio)
|
110 |
+
text = list(response)[0].text.strip()
|
111 |
+
print("Transcribed text:", text)
|
112 |
+
chatbot_history = chatbot_history + [(text, None)]
|
113 |
+
return chatbot_history, gr.update(value="", interactive=False)
|
114 |
+
|
115 |
+
def generate_speech(chatbot_history, chatbot_voice, initial_greeting=False):
|
116 |
+
# Start by yielding an initial empty audio to set up autoplay
|
117 |
+
yield ("", chatbot_history, wave_header_chunk())
|
118 |
+
|
119 |
+
# Helper function to handle the speech generation and yielding process
|
120 |
+
def handle_speech_generation(sentence, chatbot_history, chatbot_voice):
|
121 |
+
if sentence != "":
|
122 |
+
print("Processing sentence")
|
123 |
+
generated_speech = generate_speech_for_sentence(chatbot_history, chatbot_voice, sentence, xtts_model, xtts_supported_languages=config.languages, return_as_byte=True)
|
124 |
+
if generated_speech is not None:
|
125 |
+
_, audio_dict = generated_speech
|
126 |
+
yield (sentence, chatbot_history, audio_dict["value"])
|
127 |
+
|
128 |
+
if initial_greeting:
|
129 |
+
# Process only the initial greeting if specified
|
130 |
+
for _, sentence in chatbot_history:
|
131 |
+
yield from handle_speech_generation(sentence, chatbot_history, chatbot_voice)
|
132 |
+
else:
|
133 |
+
# Continuously get and process sentences from a generator function
|
134 |
+
for sentence, chatbot_history in get_sentence(chatbot_history, mistral_llm):
|
135 |
+
print("Inserting sentence to queue")
|
136 |
+
yield from handle_speech_generation(sentence, chatbot_history, chatbot_voice)
|
137 |
+
|
138 |
+
txt_msg = txt_box.submit(fn=add_text, inputs=[chatbot, txt_box], outputs=[chatbot, txt_box], queue=False
|
139 |
+
).then(fn=generate_speech, inputs=[chatbot,chatbot_voice], outputs=[sentence, chatbot, audio_playback])
|
140 |
+
|
141 |
+
txt_msg.then(fn=lambda: gr.update(interactive=True), inputs=None, outputs=[txt_box], queue=False)
|
142 |
+
|
143 |
+
audio_msg = audio_record.stop_recording(fn=add_audio, inputs=[chatbot, audio_record], outputs=[chatbot, txt_box], queue=False
|
144 |
+
).then(fn=generate_speech, inputs=[chatbot,chatbot_voice], outputs=[sentence, chatbot, audio_playback])
|
145 |
+
|
146 |
+
audio_msg.then(fn=lambda: (gr.update(interactive=True),gr.update(interactive=True,value=None)), inputs=None, outputs=[txt_box, audio_record], queue=False)
|
147 |
+
|
148 |
+
FOOTNOTE = """
|
149 |
+
This Space demonstrates how to speak to an llm chatbot, based solely on open accessible models.
|
150 |
+
It relies on the following models :
|
151 |
+
- Speech to Text Model: [Faster-Whisper-large-v3](https://huggingface.co/Systran/faster-whisper-large-v3) an ASR model, to transcribe recorded audio to text.
|
152 |
+
- Large Language Model: [Mistral-7b-instruct-v0.1-quantized](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) a LLM to generate the chatbot responses.
|
153 |
+
- Text to Speech Model: [XTTS-v2](https://huggingface.co/spaces/coqui/xtts) a TTS model, to generate the voice of the chatbot.
|
154 |
+
Note:
|
155 |
+
- Responses generated by chat model should not be assumed correct or taken serious, as this is a demonstration example only
|
156 |
+
- iOS (Iphone/Ipad) devices may not experience voice due to autoplay being disabled on these devices by Vendor"""
|
157 |
+
gr.Markdown(FOOTNOTE)
|
158 |
+
demo.load(fn=generate_speech, inputs=[chatbot,chatbot_voice, gr.State(value=True)], outputs=[sentence, chatbot, audio_playback])
|
159 |
+
demo.queue().launch(debug=True,share=True)
|