File size: 10,227 Bytes
ca7d30b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import streamlit as st
from streamlit_lottie import st_lottie
from typing import Literal
from dataclasses import dataclass
import json
import base64
from langchain.memory import ConversationBufferMemory
from langchain.callbacks import get_openai_callback
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain, RetrievalQA
from langchain.prompts.prompt import PromptTemplate
from langchain.text_splitter import NLTKTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
import nltk
from prompts.prompts import templates
# Audio
from speech_recognition.openai_whisper import save_wav_file, transcribe
from audio_recorder_streamlit import audio_recorder
from aws.synthesize_speech import synthesize_speech
from IPython.display import Audio

def load_lottiefile(filepath: str):

    '''Load lottie animation file'''

    with open(filepath, "r") as f:
        return json.load(f)

st_lottie(load_lottiefile("images/welcome.json"), speed=1, reverse=False, loop=True, quality="high", height=300)

#st.markdown("""solutions to potential errors:""")
with st.expander("""Why did I encounter errors when I tried to talk to the AI Interviewer?"""):
    st.write("""
    This is because the app failed to record. Make sure that your microphone is connected and that you have given permission to the browser to access your microphone.""")

st.markdown("""\n""")
jd = st.text_area("""Please enter the job description here (If you don't have one, enter keywords, such as "communication" or "teamwork" instead): """)
auto_play = st.checkbox("Let AI interviewer speak! (Please don't switch during the interview)")
#st.toast("4097 tokens is roughly equivalent to around 800 to 1000 words or 3 minutes of speech. Please keep your answer within this limit.")

@dataclass
class Message:
    '''dataclass for keeping track of the messages'''
    origin: Literal["human", "ai"]
    message: str

def autoplay_audio(file_path: str):
    '''Play audio automatically'''
    def update_audio():
        global global_audio_md
        with open(file_path, "rb") as f:
            data = f.read()
            b64 = base64.b64encode(data).decode()
            global_audio_md = f"""
                <audio controls autoplay="true">
                <source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
                </audio>
                """
    def update_markdown(audio_md):
        st.markdown(audio_md, unsafe_allow_html=True)
    update_audio()
    update_markdown(global_audio_md)

def embeddings(text: str):

    '''Create embeddings for the job description'''

    nltk.download('punkt')
    text_splitter = NLTKTextSplitter()
    texts = text_splitter.split_text(text)
    # Create emebeddings
    embeddings = OpenAIEmbeddings()
    docsearch = FAISS.from_texts(texts, embeddings)
    retriever = docsearch.as_retriever(search_tupe='similarity search')
    return retriever

def initialize_session_state():

    '''Initialize session state variables'''

    if "retriever" not in st.session_state:
        st.session_state.retriever = embeddings(jd)
    if "chain_type_kwargs" not in st.session_state:
        Behavioral_Prompt = PromptTemplate(input_variables=["context", "question"],
                                          template=templates.behavioral_template)
        st.session_state.chain_type_kwargs = {"prompt": Behavioral_Prompt}
    # interview history
    if "history" not in st.session_state:
        st.session_state.history = []
        st.session_state.history.append(Message("ai", "Hello there! I am your interviewer today. I will access your soft skills through a series of questions. Let's get started! Please start by saying hello or introducing yourself. Note: The maximum length of your answer is 4097 tokens!"))
    # token count
    if "token_count" not in st.session_state:
        st.session_state.token_count = 0
    if "memory" not in st.session_state:
        st.session_state.memory = ConversationBufferMemory()
    if "guideline" not in st.session_state:
        llm = ChatOpenAI(
            model_name="gpt-3.5-turbo",
            temperature=0.8, )
        st.session_state.guideline = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type_kwargs=st.session_state.chain_type_kwargs, chain_type='stuff',
            retriever=st.session_state.retriever, memory=st.session_state.memory).run(
            "Create an interview guideline and prepare total of 8 questions. Make sure the questions tests the soft skills")
    # llm chain and memory
    if "conversation" not in st.session_state:
        llm = ChatOpenAI(
        model_name = "gpt-3.5-turbo",
        temperature = 0.8,)
        PROMPT = PromptTemplate(
            input_variables=["history", "input"],
            template="""I want you to act as an interviewer strictly following the guideline in the current conversation.
                            Candidate has no idea what the guideline is.
                            Ask me questions and wait for my answers. Do not write explanations.
                            Ask question like a real person, only one question at a time.
                            Do not ask the same question.
                            Do not repeat the question.
                            Do ask follow-up questions if necessary. 
                            You name is GPTInterviewer.
                            I want you to only reply as an interviewer.
                            Do not write all the conversation at once.
                            If there is an error, point it out.

                            Current Conversation:
                            {history}

                            Candidate: {input}
                            AI: """)
        st.session_state.conversation = ConversationChain(prompt=PROMPT, llm=llm,
                                                       memory=st.session_state.memory)
    if "feedback" not in st.session_state:
        llm = ChatOpenAI(
        model_name = "gpt-3.5-turbo",
        temperature = 0.5,)
        st.session_state.feedback = ConversationChain(
            prompt=PromptTemplate(input_variables = ["history", "input"], template = templates.feedback_template),
            llm=llm,
            memory = st.session_state.memory,
        )

def answer_call_back():

    '''callback function for answering user input'''

    with get_openai_callback() as cb:
        # user input
        human_answer = st.session_state.answer
        # transcribe audio
        if voice:
            save_wav_file("temp/audio.wav", human_answer)
            try:
                input = transcribe("temp/audio.wav")
                # save human_answer to history
            except:
                st.session_state.history.append(Message("ai", "Sorry, I didn't get that."))
                return "Please try again."
        else:
            input = human_answer

        st.session_state.history.append(
            Message("human", input)
        )
        # OpenAI answer and save to history
        llm_answer = st.session_state.conversation.run(input)
        # speech synthesis and speak out
        audio_file_path = synthesize_speech(llm_answer)
        # create audio widget with autoplay
        audio_widget = Audio(audio_file_path, autoplay=True)
        # save audio data to history
        st.session_state.history.append(
            Message("ai", llm_answer)
        )
        st.session_state.token_count += cb.total_tokens
        return audio_widget

### ————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
if jd:

    initialize_session_state()
    credit_card_placeholder = st.empty()
    col1, col2 = st.columns(2)
    with col1:
        feedback = st.button("Get Interview Feedback")
    with col2:
        guideline = st.button("Show me interview guideline!")
    audio = None
    chat_placeholder = st.container()
    answer_placeholder = st.container()

    if guideline:
        st.write(st.session_state.guideline)
    if feedback:
        evaluation = st.session_state.feedback.run("please give evalution regarding the interview")
        st.markdown(evaluation)
        st.download_button(label="Download Interview Feedback", data=evaluation, file_name="interview_feedback.txt")
        st.stop()
    else:
        with answer_placeholder:
            voice: bool = st.checkbox("I would like to speak with AI Interviewer!")
            if voice:
                answer = audio_recorder(pause_threshold=2.5, sample_rate=44100)
                #st.warning("An UnboundLocalError will occur if the microphone fails to record.")
            else:
                answer = st.chat_input("Your answer")
            if answer:
                st.session_state['answer'] = answer
                audio = answer_call_back()
        with chat_placeholder:
            for answer in st.session_state.history:
                if answer.origin == 'ai':
                    if auto_play and audio:
                        with st.chat_message("assistant"):
                            st.write(answer.message)
                            st.write(audio)
                    else:
                        with st.chat_message("assistant"):
                            st.write(answer.message)
                else:
                    with st.chat_message("user"):
                        st.write(answer.message)

        credit_card_placeholder.caption(f"""
                        Progress: {int(len(st.session_state.history) / 30 * 100)}% completed.
        """)

else:
    st.info("Please submit job description to start interview.")