Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_lottie import st_lottie | |
from typing import Literal | |
from dataclasses import dataclass | |
import json | |
import base64 | |
from langchain.memory import ConversationBufferMemory | |
from langchain.callbacks import get_openai_callback | |
from langchain.chat_models import ChatOpenAI | |
from langchain.chains import ConversationChain, RetrievalQA | |
from langchain.prompts.prompt import PromptTemplate | |
from langchain.text_splitter import NLTKTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
import nltk | |
from prompts.prompts import templates | |
# Audio | |
from speech_recognition.openai_whisper import save_wav_file, transcribe | |
from audio_recorder_streamlit import audio_recorder | |
from aws.synthesize_speech import synthesize_speech | |
from IPython.display import Audio | |
def load_lottiefile(filepath: str): | |
with open(filepath, "r") as f: | |
return json.load(f) | |
st_lottie(load_lottiefile("images/welcome.json"), speed=1, reverse=False, loop=True, quality="high", height=300) | |
#st.markdown("""solutions to potential errors:""") | |
with st.expander("""Why did I encounter errors when I tried to talk to the AI Interviewer?"""): | |
st.write(""" | |
This is because the app failed to record. Make sure that your microphone is connected and that you have given permission to the browser to access your microphone.""") | |
jd = st.text_area("Please enter the job description here (If you don't have one, enter keywords, such as PostgreSQL or Python instead): ") | |
auto_play = st.checkbox("Let AI interviewer speak! (Please don't switch during the interview)") | |
#st.toast("4097 tokens is roughly equivalent to around 800 to 1000 words or 3 minutes of speech. Please keep your answer within this limit.") | |
class Message: | |
"""class for keeping track of interview history.""" | |
origin: Literal["human", "ai"] | |
message: str | |
def save_vector(text): | |
"""embeddings""" | |
nltk.download('punkt') | |
text_splitter = NLTKTextSplitter() | |
texts = text_splitter.split_text(text) | |
# Create emebeddings | |
embeddings = OpenAIEmbeddings() | |
docsearch = FAISS.from_texts(texts, embeddings) | |
return docsearch | |
def initialize_session_state_jd(): | |
""" initialize session states """ | |
if 'jd_docsearch' not in st.session_state: | |
st.session_state.jd_docserch = save_vector(jd) | |
if 'jd_retriever' not in st.session_state: | |
st.session_state.jd_retriever = st.session_state.jd_docserch.as_retriever(search_type="similarity") | |
if 'jd_chain_type_kwargs' not in st.session_state: | |
Interview_Prompt = PromptTemplate(input_variables=["context", "question"], | |
template=templates.jd_template) | |
st.session_state.jd_chain_type_kwargs = {"prompt": Interview_Prompt} | |
if 'jd_memory' not in st.session_state: | |
st.session_state.jd_memory = ConversationBufferMemory() | |
# interview history | |
if "jd_history" not in st.session_state: | |
st.session_state.jd_history = [] | |
st.session_state.jd_history.append(Message("ai", | |
"Hello, Welcome to the interview. I am your interviewer today. I will ask you professional questions regarding the job description you submitted." | |
"Please start by introducting a little bit about yourself. Note: The maximum length of your answer is 4097 tokens!")) | |
# token count | |
if "token_count" not in st.session_state: | |
st.session_state.token_count = 0 | |
if "jd_guideline" not in st.session_state: | |
llm = ChatOpenAI( | |
model_name = "gpt-3.5-turbo", | |
temperature = 0.8,) | |
st.session_state.jd_guideline = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type_kwargs=st.session_state.jd_chain_type_kwargs, chain_type='stuff', | |
retriever=st.session_state.jd_retriever, memory = st.session_state.jd_memory).run("Create an interview guideline and prepare only one questions for each topic. Make sure the questions tests the technical knowledge") | |
# llm chain and memory | |
if "jd_screen" not in st.session_state: | |
llm = ChatOpenAI( | |
model_name="gpt-3.5-turbo", | |
temperature=0.8, ) | |
PROMPT = PromptTemplate( | |
input_variables=["history", "input"], | |
template="""I want you to act as an interviewer strictly following the guideline in the current conversation. | |
Candidate has no idea what the guideline is. | |
Ask me questions and wait for my answers. Do not write explanations. | |
Ask question like a real person, only one question at a time. | |
Do not ask the same question. | |
Do not repeat the question. | |
Do ask follow-up questions if necessary. | |
You name is GPTInterviewer. | |
I want you to only reply as an interviewer. | |
Do not write all the conversation at once. | |
If there is an error, point it out. | |
Current Conversation: | |
{history} | |
Candidate: {input} | |
AI: """) | |
st.session_state.jd_screen = ConversationChain(prompt=PROMPT, llm=llm, | |
memory=st.session_state.jd_memory) | |
if 'jd_feedback' not in st.session_state: | |
llm = ChatOpenAI( | |
model_name="gpt-3.5-turbo", | |
temperature=0.8, ) | |
st.session_state.jd_feedback = ConversationChain( | |
prompt=PromptTemplate(input_variables=["history", "input"], template=templates.feedback_template), | |
llm=llm, | |
memory=st.session_state.jd_memory, | |
) | |
def answer_call_back(): | |
with get_openai_callback() as cb: | |
# user input | |
human_answer = st.session_state.answer | |
# transcribe audio | |
if voice: | |
save_wav_file("temp/audio.wav", human_answer) | |
try: | |
input = transcribe("temp/audio.wav") | |
# save human_answer to history | |
except: | |
st.session_state.jd_history.append(Message("ai", "Sorry, I didn't get that.")) | |
return "Please try again." | |
else: | |
input = human_answer | |
st.session_state.jd_history.append( | |
Message("human", input) | |
) | |
# OpenAI answer and save to history | |
llm_answer = st.session_state.jd_screen.run(input) | |
# speech synthesis and speak out | |
audio_file_path = synthesize_speech(llm_answer) | |
# create audio widget with autoplay | |
audio_widget = Audio(audio_file_path, autoplay=True) | |
# save audio data to history | |
st.session_state.jd_history.append( | |
Message("ai", llm_answer) | |
) | |
st.session_state.token_count += cb.total_tokens | |
return audio_widget | |
if jd: | |
# initialize session states | |
initialize_session_state_jd() | |
#st.write(st.session_state.jd_guideline) | |
credit_card_placeholder = st.empty() | |
col1, col2 = st.columns(2) | |
with col1: | |
feedback = st.button("Get Interview Feedback") | |
with col2: | |
guideline = st.button("Show me interview guideline!") | |
chat_placeholder = st.container() | |
answer_placeholder = st.container() | |
audio = None | |
# if submit email adress, get interview feedback imediately | |
if guideline: | |
st.write(st.session_state.jd_guideline) | |
if feedback: | |
evaluation = st.session_state.jd_feedback.run("please give evalution regarding the interview") | |
st.markdown(evaluation) | |
st.download_button(label="Download Interview Feedback", data=evaluation, file_name="interview_feedback.txt") | |
st.stop() | |
else: | |
with answer_placeholder: | |
voice: bool = st.checkbox("I would like to speak with AI Interviewer") | |
if voice: | |
answer = audio_recorder(pause_threshold = 2.5, sample_rate = 44100) | |
#st.warning("An UnboundLocalError will occur if the microphone fails to record.") | |
else: | |
answer = st.chat_input("Your answer") | |
if answer: | |
st.session_state['answer'] = answer | |
audio = answer_call_back() | |
with chat_placeholder: | |
for answer in st.session_state.jd_history: | |
if answer.origin == 'ai': | |
if auto_play and audio: | |
with st.chat_message("assistant"): | |
st.write(answer.message) | |
st.write(audio) | |
else: | |
with st.chat_message("assistant"): | |
st.write(answer.message) | |
else: | |
with st.chat_message("user"): | |
st.write(answer.message) | |
credit_card_placeholder.caption(f""" | |
Progress: {int(len(st.session_state.jd_history) / 30 * 100)}% completed.""") | |
else: | |
st.info("Please submit a job description to start the interview.") | |