|
from diffusers import DiffusionPipeline |
|
import gradio as gr |
|
model_id = "CompVis/ldm-text2im-large-256" |
|
ldm = DiffusionPipeline.from_pretrained(model_id) |
|
|
|
def generate_image(Prompt): |
|
images = ldm([Prompt], num_inference_steps=50, eta=.3, guidance_scale=6) |
|
return images.images[0] |
|
|
|
interface = gr.Interface(fn = generate_image,inputs = "text",outputs = "image",title = "Mashdemy Demo Image Generator App", description = "Type in a text and click submit to generate an image:", examples = ["a clown reading a book", "a cat using a laptop", "An elephant on grass"]) |
|
interface.launch(share = True) |