Nuno-Tome commited on
Commit
62fbd16
1 Parent(s): 49572dd

no message

Browse files
Files changed (1) hide show
  1. app.py +11 -10
app.py CHANGED
@@ -15,8 +15,8 @@ DATASETS = [
15
  MAX_N_LABELS = 5
16
  SPLIT_TO_CLASSIFY = 'pasta'
17
 
18
- COLS = st.columns([3, 1])
19
-
20
 
21
 
22
 
@@ -51,27 +51,27 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
51
 
52
  #dataset
53
  dataset = load_dataset(shosen_dataset_name,"testedata_readme")
54
- with COLS[1]:
55
  #Image teste load
56
  image_object = dataset['pasta'][0]["image"]
57
  st.image(image_object, caption="Uploaded Image", width=300)
58
- st.write("### FLAG 3")
59
 
60
  #modle instance
61
  classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
62
- COLS[1].write("### FLAG 4")
63
 
64
  #classification
65
  classification_result = classifier_pipeline(image_object)
66
- COLS[1].write(classification_result)
67
- COLS[1].write("### FLAG 5")
68
  #classification_array.append(classification_result)
69
 
70
  #save classification
71
 
72
  image_count += 1
73
- COLS[1].write(f"Image count: {image_count}")
74
-
75
  return image_count
76
 
77
 
@@ -92,7 +92,8 @@ def main():
92
 
93
 
94
  COLS[0].write("# Bulk Image Classification App")
95
-
 
96
  #with CONTAINER_BODY:
97
  with COLS[0]:
98
  st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
 
15
  MAX_N_LABELS = 5
16
  SPLIT_TO_CLASSIFY = 'pasta'
17
 
18
+ COLS = st.columns([0.75, 0.25])
19
+ SCROLLABLE_TEXT = COLS[1].text_area("Conteúdo da segunda coluna", height=500)
20
 
21
 
22
 
 
51
 
52
  #dataset
53
  dataset = load_dataset(shosen_dataset_name,"testedata_readme")
54
+ with SCROLLABLE_TEXT:
55
  #Image teste load
56
  image_object = dataset['pasta'][0]["image"]
57
  st.image(image_object, caption="Uploaded Image", width=300)
58
+ #st.write("### FLAG 3")
59
 
60
  #modle instance
61
  classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
62
+ #COLS[1].write("### FLAG 4")
63
 
64
  #classification
65
  classification_result = classifier_pipeline(image_object)
66
+ SCROLLABLE_TEXT.write(classification_result)
67
+ #COLS[1].write("### FLAG 5")
68
  #classification_array.append(classification_result)
69
 
70
  #save classification
71
 
72
  image_count += 1
73
+ SCROLLABLE_TEXT.write("Image count")
74
+ SCROLLABLE_TEXT.write(image_count)
75
  return image_count
76
 
77
 
 
92
 
93
 
94
  COLS[0].write("# Bulk Image Classification App")
95
+
96
+
97
  #with CONTAINER_BODY:
98
  with COLS[0]:
99
  st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")